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Abstract

The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when
perturbations on an interface separating gases with different properties grow following the
passage of a shock. This instability is typically studied in shock tube experiments, and con-
stitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations
and models for the instability growth and evolution have also been used to further eluci-
date the physics of the Richtmyer-Meshkov instability. In the present work, the formally
high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method
using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme
(as implemented in the HOPE code [68]) is applied to simulate the single-mode Richtmyer-
Meshkov instability with reshock in two spatial dimensions. The initial conditions and
computational domain for the simulations are modeled after the Collins and Jacobs [29]
single-mode, Mach 1.21 air(acetone)/SF6 shock tube experiment. The following boundary
conditions are used: (1) periodic in the spanwise direction corresponding to the cross-
section of the test section; (2) outflow at the entrance of the test section in the streamwise
direction, and; (3) reflecting at the end wall of the test section in the streamwise direc-
tion. The present investigation has three principal motivations: (1) to provide additional
validation of the HOPE code against available experimental data; (2) to provide numerical
simulation data for detailed analysis of mixing induced by the Richtmyer-Meshkov instabil-
ity with reshock, and; (3) to systematically investigate the dependence of mixing properties
on both the order of WENO reconstruction and on the spatial resolution. The present study
constitutes the first comprehensive application of the high-resolution WENO method to the
Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing.

First, analytical, semi-analytical, and phenomenological impulsive, point vortex, per-
turbation, potential flow, and asymptotic power-law models for the growth of a single- and
multi-mode perturbation are reviewed, including models for diffuse and reshocked inter-
faces. A model for baroclinic circulation deposition is also reviewed. Numerical simulations
are performed using the third-, fifth-, and ninth-order WENO method with spatial resolu-
tions corresponding to a uniform grid with 128, 256, and 512 points per initial perturbation
wavelength. The density from the fifth- and ninth-order simulation is compared to the cor-
rected experimental PLIF images of Collins and Jacobs at selected times. The amplitude
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obtained from the fifth-order simulation at a resolution of 256 points per initial perturba-
tion wavelength is compared to the experimental data of Collins and Jacobs and to the
predictions of linear and nonlinear amplitude growth models before and after reshock. The
prediction of the Zhang-Sohn nonlinear amplitude growth model is found to be in best
agreement with the amplitude from the simulation prior to reshock. The simulation ampli-
tude data is also in excellent agreement with the experimentally-measured amplitude prior
to reshock. The absence of the initial rarefaction wave (resulting from the rupture of the
membrane that generates the first shock) in the numerical simulations results in a time lag
between the numerical and experimental interface evolution following reshock. The results
of this component of the present investigation also serve as an additional validation of the
HOPE code as applied to a shock-induced hydrodynamic instability.

Second, local and global properties of the mixing during the linear, nonlinear, pre- and
post-reshock, and late-time phases are investigated and discussed, including a quantitative
investigation of the time-dependence and structure of various related mixing parameters
defined in terms of the mole fraction and one-dimensional energy spectra. Spatial averaging
of quantities along the spanwise (periodic) flow direction yields streamwise profiles, and is
used to define instantaneous Reynolds and Favre averages and fluctuations. The fluctua-
tions are Fourier-transformed along the spanwise direction to define time-dependent energy
spectra as a function of the one-dimensional wavenumber. Global statistics are obtained by
integrating these spectra over all wavenumbers. Several time-dependent volume-averaged
quantities are also considered. The effects of reshock on these quantities are examined
and discussed in detail. A comparison of simulations with reflecting and outflow boundary
conditions at the end wall of the test section exhibits the effects of additional reflected wave
interactions following reshock on the quantities considered. The simulations are carried out
to much longer times (t = 18 ms) than reported in the experiment (t = 11 ms) to study the
evolution of profiles, spectra, and statistics in the decay and quasi-decay regimes (corre-
sponding to outflow and reflecting boundary conditions, respectively)—quantities that are
not currently experimentally-measurable.

Third, the dependence of the mixing layer width, mixing properties, spectra, and statis-
tics on the grid resolution and on the order of WENO spatial flux reconstruction is com-
prehensively investigated. Simulations with varying orders of reconstruction and grid res-
olutions have different intrinsic numerical diffusion arising from the truncation and other
numerical errors in the algorithm. Quantities such as mixing fractions and energy spectra
are sensitive to the numerical diffusion prior to reshock: it is shown that these sensitivities
are significantly amplified following reshock when the energy deposited by the shock on the
evolving interface induces the formation of small-scale structures and amplifies the fluc-
tuations of all quantities within the mixing layer. It is shown that simulations on coarse
grids and using low orders of WENO reconstruction preserve large-scale structures and
symmetry even at late times, while simulations on fine grids and using higher orders of re-
construction exhibit fragmentation of the structures, breaking of symmetry, and increased
mixing. The differences between the simulations can be quantified by the time-evolution of
the fluctuating kinetic energy and enstrophy, as well as the density and pressure variance.
The investigation suggests that similar flow features are qualitatively and quantitatively
captured by either increasing the spatial resolution or the order of reconstruction. The
computational scaling shows that increasing the order of reconstruction from third to fifth
or from fifth to ninth approximately doubles the computational cost. However, for a given
order of reconstruction, doubling the spatial resolution from 128 to 256 or from 256 to 512
points per initial perturbation wavelength incurs a five- to eight-fold increase in computa-
tional cost.

Based on the results of the present investigation, it is concluded that the WENO method
using high-order reconstruction is well-suited for the simulation and analysis of complex
hydrodynamic flows induced by shock-interface interactions.
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1 Introduction

The Richtmyer-Meshkov instability occurs when perturbations on the interface separating two
different fluids grow following the passage of a shock and eventually develop complex structure.
The instability derives its name from the linear instability analysis and numerical work of
Richtmyer [106], who considered the instability generated by a shock impulsively accelerating
a sinusoidally-perturbed interface. The predictions of Richtmyer were subsequently confirmed
in shock tube experiments by Meshkov [82]. This instability is of great fundamental interest
in fluid dynamics [127, 18], as well as of interest to inertial confinement fusion [75, 96, 76, 13],
and to supernovae dynamics [40, 11, 12, 57, 10]. One of the challenges in understanding the
Richtmyer-Meshkov instability is modeling the growth of the mixing layer in the nonlinear
phase and following reshock, as well as predicting the statistical properties and dynamics of
turbulent mixing induced by this instability.

The classical Richtmyer-Meshkov instability is typically investigated experimentally in
shock tubes. Consider a two-dimensional flow, where x is the streamwise direction (the direc-
tion of shock propagation) and y is the spanwise direction. Two gases with different densities
are initially at rest and separated by a perturbed interface η(y, t = 0). A multi-mode initial
perturbation can be represented as a superposition of sinusoidal modes

η(y, 0) =
N∑
n=1

an sin (kny) , (1)

where {an} are the initial amplitudes, and

kn =
2π
λn

(2)

=
2πn
λ

are the wavenumbers with wavelengths {λn}. Only a single sinusoidal mode

η(y, 0) = a0 sin (k y) (3)

is considered in the present investigation (with corresponding wavenumber k = 2π/λ and
a1 → a0), and the gases are taken to be a mixture of air and acetone [denoted air(acetone) in
the sequel] and sulfur hexafluoride (SF6). A planar shock with Mach number Ma is generated
in the air(acetone) gas by the rupture of a diaphragm, propagates down the shock tube, enters
the test section, and interacts with the perturbed interface.

In the present work, the evolution of the Richtmyer-Meshkov instability is considered in two
spatial dimensions using the HOPE code (see Part 1 of this report [68] for the governing equations
and a detailed description of the code and numerical method). A particular validation of the
HOPE code using shock refraction theory was also presented in Part 1 [68] of this report. Two-
dimensional simulations, analysis and modeling of the Richtmyer-Meshkov instability resulting
from the interaction of a planar shock with a perturbed inclined interface, including a study
of the effects of shock-interface angle, Mach number, perturbation amplitude, perturbation
wavelength, and gas composition are presented in Part 3 of this report [69]. Two- and three-
dimensional simulations, analysis, and modeling of the Richtmyer-Meshkov instability with
reshock are presented in Part 4 of this report [70]. Molecular dissipation and diffusion effects are
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neglected in the present simulations. Hence, these simulations can be regarded as monotone-
integrated (or implicit) large-eddy simulations [17, 37, 38].

As the shock passes through the interface, the misalignment of the pressure and density
gradients causes a deposition of vorticity through the baroclinic production mechanism illus-
trated in Fig. 1. Defining the vorticity ω = ∇ × u, where u is the velocity, the vorticity
evolution equation (shown here for three dimensions and in the absence of dissipation terms)

dω
dt

= (ω · ∇)u− ω∇ · u +
∇ρ×∇p

ρ2
(4)

describes the dynamics of vorticity generation, where d/dt = ∂/∂t + u · ∇ is the convective
derivative, ρ is the density, and p is the pressure. The first term on the right side is the vortex-
stretching term, which is zero in the present two-dimensional investigation, as the vorticity and
velocity field are orthogonal. Vortex stretching is a fundamental mechanism in the dynamics of
turbulence and distinguishes ‘two-dimensional turbulence’ [64] from actual three-dimensional
turbulence. In particular, vortex stretching is associated with the cascade of energy from large
scales to smaller scales through an inertial subrange at sufficiently large Reynolds numbers.
In two-dimensional turbulent flows, the energy transfer is predominantly from small scales to
larger scales, resulting in the generation of larger and more coherent structures than observed in
three-dimensional flows [28]. Vortex stretching enhances dissipation, resulting in more diffuse
and smaller scale structures in three dimensions. Thus, the properties of turbulent mixing
are expected to be significantly different in two and three dimensions. These differences will
be examined in detail in Part 4 [70] of this report. The second term on the right side is
the compression term, and does not contribute significantly to the vorticity evolution. The
third term on the right side is the baroclinic production term, and constitutes the principal
mechanism of vorticity generation by the Richtmyer-Meshkov instability. This term is large
when the shock passes through the interface and when waves interact with the interface.
Following the passage of the shock, the perturbed interface is set in motion along the direction
of shock propagation, a reflected shock returns back into the air(acetone) gas, and a transmitted
shock enters the SF6 gas.

The vorticity baroclinically deposited on the interface by the shock drives the evolution of
the instability, with spikes of the heavier fluid (SF6) penetrating the lighter fluid [air(acetone)]
and bubbles of the lighter fluid “rising” in the heavier fluid. When the fluids are miscible,
molecular mixing occurs between these interpenetrating fluids, generating a mixing layer and a
topologically-complex flow. In the present investigation, explicit molecular mixing is not mod-
eled; instead, numerical diffusion across the interface models the ‘molecular mixing’ process.
At late times, the vorticity coalesces into strong cores causing the characteristic mushroom roll-
ups to form, as illustrated in Fig. 1. Additional deposition of vorticity and enhanced mixing
occurs when the interface interacts with another shock wave, as in the configuration consid-
ered here. The transmitted shock from the initial shock-interface interaction reflects from the
end wall of the shock tube test section and interacts with the evolving layer, as illustrated
in Fig. 2. This second interaction (referred to as reshock in the sequel) deposits vorticity of
opposite sign so that bubbles transform into spikes and vice versa in a process called inversion.
The inversion process induces the formation of additional complex structures, with additional
disorganized small-scale flow features observed at late times, as shown in Fig. 3. Following
reshock, the interface changes its direction of motion and now moves away from the end wall
of the test section: a transmitted shock enters the air(acetone) and a reflected rarefaction
returns into the SF6. Unlike in the case of the first shock-interface interaction, the reflected
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wave is now a rarefaction wave, as the shock refracts from the heavier SF6 gas into the lighter
air(acetone) gas. The rarefaction wave is reflected from the end wall of the test section and in-
teracts with the evolving interface, resulting in the formation of additional complex, small-scale
structures. Throughout the evolution of the instability, both prior to and following reshock,
shear due to the secondary Kelvin-Helmholtz instability [35, 36, 80] develops at the interface.
This secondary instability further enhances the development of a complex interface topology
with increasing length in two dimensions and surface area in three dimensions, eventually re-
sulting in a mixing layer that becomes turbulent at sufficiently large Reynolds numbers. The
single-mode Richtmyer-Meshkov instability with reshock is considered in the present work, as
it offers the possibility to observe two phases of the instability development and their coupling:
the nonlinear phase prior to reshock, and the post-reshock phase. As summarized below in §
1.1 and 1.2, this flow configuration has not been extensively studied either experimentally or
numerically.

1.1 Previous single-mode Richtmyer-Meshkov instability experiments with
reshock

Many experiments have been performed to investigate different aspects of the Richtmyer-
Meshkov instability (see Brouillette [18] for a recent review). However, most of the experiments
conducted to date only consider the evolution of the instability in the linear and nonlinear
regimes. Relatively few experiments have been performed to study the dynamics of the flow
following reshock. Briefly summarized below are single-mode, compressible experiments with
reshock in a planar geometry, which are relevant to the present investigation (multi-mode
experiments are summarized in Part 4 [70] of this report). The present discussion is limited
to classical fluid (shock tube) experiments and does not consider high-energy density (laser-
driven) experiments.

Houas and Chemouni [50] performed shock tube experiments using CO2/He, CO2/Ar,
and CO2/Kr over a range of shock Mach numbers Ma = 2–4.7 to determine the power-law
governing the width of the mixing layer before and after reshock. The measurements were
compared against the linear [87] and t2/3 [15] growth power-laws, and it was concluded that
the data was in good agreement with the t2/3 law both before and after reshock. Sadot et al.
[110] performed a shock tube experiment using air/SF6 with λ = 2.6 cm, a0 = 0.2 cm, and
Ma = 1.3. Collins and Jacobs [29] performed shock tube experiments using air(acetone)/SF6

with λ = 5.93 cm, a0 = 0.229 cm and 0.183 cm for Ma = 1.11 and 1.21, respectively. The
experimental amplitude growth prior to reshock was compared to the predictions of models.
The Collins-Jacobs experiments are described in more detail in § 3.1. The quantitative data
obtained from these experiments was mainly limited to perturbation amplitude growth: no
detailed data concerning the mixing properties within the layer were available.

1.2 Previous numerical simulations of single-mode Richtmyer-Meshkov in-
stability with reshock

The vast majority of numerical simulations of single- and multi-mode Richtmyer-Meshkov
instabilities to date have considered the flow evolution initiated by only a single shock-interface
interaction. As in the case of experiments, very few simulations have considered the effects
of reshock on an evolving interface. Briefly summarized below are single-mode, compressible
simulations with reshock in a planar geometry, which are relevant to the present investigation
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density at t = 2 ms vorticity at t = 2 ms

density at t = 5 ms vorticity at t = 5 ms

Figure 1: The Richtmyer-Meshkov instability occurs when perturbations on an interface sepa-
rating two fluids with different properties grow following the passage of a shock. The vorticity
deposited baroclinically through the misalignment of the density and pressure gradients drives
the evolution of the instability. As the instability develops, spikes of heavier fluid penetrate
into the lighter fluid and bubbles of the lighter fluid penetrate into the heavier fluid. The
vorticity coalesces into vortices with strong cores forming the characteristic “mushrooms” at
late times. The images are taken from the simulation described in § 3.
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density at t = 6.5 ms vorticity at t = 6.5 ms pressure at t = 6.5 ms

Figure 2: The single-mode Richtmyer-Meshkov instability during reshock. The reflected shock
compresses the interface and deposits vorticity of opposite sign on the interface. Note the
reflected rarefaction wave and the transmitted shock wave in the pressure. The images are
taken from the simulation described in § 3.

density at t = 6.9 ms density at t = 8.9 ms

Figure 3: Following reshock of the evolving interface, bubbles transform into spikes and vice
versa during the inversion process, causing additional structures to form. At late times, the
roll-ups develop more disorganized, small-scale structures. The images are taken from the
simulation described in § 3.
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(multi-mode simulations are summarized in Part 4 [70] of this report). The present discussion
is limited to classical fluid (shock tube) simulations and does not consider simulations in
converging geometry.

Mikaelian [91] performed two-dimensional arbitrary Lagrangian-Eulerian (ALE) simula-
tions of gas configurations consisting of three layers, 1/2/1, with fluid 1 representing semi-
infinite layers of air and fluid 2 representing a finite-thickness layer of freon, SF6, or helium,
having perturbations either on the upstream or downstream side. These perturbations were
in phase (sinuous) or out of phase (varicose). The shock Mach number was 1.5. The primary
purpose of the simulations was to investigate freeze-out, interface coupling, and feedthrough.
Sadot et al. [110] compared the amplitude growth from their single-mode reshock experiment
to numerical simulation data and found very good agreement prior to the arrival of the rarefac-
tion wave from the end wall. As in the case of experiments, the quantitative data obtained from
these simulations was mainly limited to the consideration of perturbation amplitude growth.

1.3 Objectives of the current investigation

A central objective of the present work is to establish a systematic methodology for investi-
gating the dynamics of the mixing process induced by the Richtmyer-Meshkov instability, and
more generally by complex hydrodynamic flows. The methods used are adapted from classical
investigations of turbulence and turbulent mixing, and synthesize high-resolution numerical
simulation data, theoretical models for instability growth, and available experimental data.
This procedure results in:

1. the application of a modern, high-resolution, flexible, robust numerical method that has
been validated against available experimental data;

2. a numerical database that provides quantities that can be compared to model predictions
and to experimental measurements, as well as quantities that have not been modeled (or
are difficult to model) or are not available experimentally;

3. numerical data for configurations extended to times beyond what is possible to achieve
experimentally, or for configurations that are difficult to achieve experimentally;

4. a systematic understanding of the important effects of spatial resolution and formal order
of the method on quantities of interest to modeling the instability evolution and mixing.

The present set of simulations can be regarded as numerical experiments with initial and
boundary conditions, and flow geometry, selected to closely approximate the Collins-Jacobs
Mach 1.21 shock tube experiment. This study is part of a larger, longer-term program directed
at:

1. developing improved theoretical models for instability growth in the nonlinear regime, as
well as for the more disordered and possibly turbulent evolution following reshock;

2. investigating turbulence closure models for ensemble-averaged descriptions of turbulent
transport and mixing, as well as for the development and assessment of subgrid-scale
models for large-eddy simulations;

3. improving the numerical methods used to simulate complex hydrodynamic flows induced
by shocks;
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4. aiding the design of novel experimental configurations and new experimental diagnostics.

This report is organized according to three principal components. First, a comprehensive
review of the principal linear and nonlinear models for single- and multi-mode perturbation
amplitude growth is presented in § 2, including impulsive, vortex, perturbation, potential flow,
and asymptotic power-law growth models. Models for diffuse and reshocked interfaces are
also reviewed. Two-dimensional numerical simulations of the single-mode Richtmyer-Meshkov
instability with reshock using the fifth-order WENO method (using the HOPE code) and a
uniform grid resolution based on 256 points per initial perturbation wavelength are performed.
The initial conditions and computational domain for the simulations are adapted from the
Mach 1.21 air(acetone)/SF6- shock tube experiment of Collins and Jacobs [29]. The interface
(density) evolution is compared to the experimental PLIF images of Collins and Jacobs before
and after reshock in § 3. In addition, the mixing layer amplitude from the simulation before
and after reshock is compared to the experimental data and to the predictions of the analytical,
semi-analytical, and phenomenological models summarized in § 2.

Second, a comprehensive quantitative analysis of the local and global properties of mix-
ing is presented in § 4. The analysis characterizes the mixing process along the direction of
shock propagation using mole fractions and a fast kinetic reaction model. The modal distri-
bution of energy in the mixing layer is quantified using a Fourier (spectral) analysis of the
fluctuating kinetic energy (and its streamwise and spanwise components) and enstrophy, as
well as the pressure variance and the density variance. The evolution of mixing is character-
ized using mixing fractions before and after reshock up to time t = 18 ms. Finally, statistics
(wavenumber-integrated energy spectra) are considered to understand the time-evolution of
energy present in the fluctuations. Furthermore, to investigate the decay of fluctuations in the
mixing layer in the absence of additional waves interacting with the evolving interface following
reshock, the boundary condition at the end of the computational domain (corresponding to
the end wall of the test section) is changed from reflecting to outflow to allow the reflected
rarefaction wave to exit the domain. At late time, this case is referred to as the decay regime,
as distinguished from the quasi-decay regime occurring when reflected waves interact with the
evolving interface following reshock. Comparisons of mole fractions, spatially-integrated mix-
ing profiles and fractions, and statistics between the reflecting and outflow boundary condition
cases are presented and discussed.

Third, a comprehensive investigation of the dependence of the mixing layer amplitude and
of mixing quantities on the order of reconstruction and on the grid resolution is presented
in § 5. The results from two-dimensional numerical simulations using third-, fifth-, and
ninth-order WENO reconstruction and three different uniform grid resolutions corresponding
to 512, 256, and 128 points per initial perturbation wavelength are compared. Simulations
with different grid resolutions and orders of reconstruction have different numerical diffusion
properties introduced by the algorithm. In particular, high-order, high-resolution simulations
have lower numerical diffusion than low-order, low-resolution simulations. The differences in
the time-evolution and structure of the mole fractions, spectra, mixing fractions, and statistics
are investigated before and after reshock. A temporal progression of the density and vorticity
fields is presented at intervals of 1 ms for the three orders of reconstruction and three grid
resolutions in § 5.8.
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2 Models for perturbation amplitude and mixing layer growth,
and for baroclinic circulation deposition

The prediction and modeling of the mixing layer growth in the nonlinear and turbulent regimes
resulting from the Richtmyer-Meshkov instability is of great interest. An overview of the
principal models categorized according to the underlying physical assumptions on the flow
is presented in this section. Note that it is implicitly assumed in all of these models that
molecular dissipation and diffusion effects, as well as surface tension and other effects, are
negligible (extensions of some of the models to include such effects have been developed, but
are not discussed here). While each of these models has important limitations and a limited
domain of applicability, they represent an effort to better understand the fundamental aspects
of Richtmyer-Meshkov instability growth into the nonlinear regime and following reshock.

Figure 4 shows an illustration of the bubble and spike amplitudes ab and as, respectively,
and the mixing layer width h. The blue contour shows a typical early-time evolution of the
interface induced by the Richtmyer-Meshkov instability. The spikes penetrate into the lighter
fluid and roll up, while bubbles “rise” into the heavier fluid. The solid red line shows the
location of the shocked, unperturbed interface used as a reference for the measurements of the
bubble and spike amplitudes. The distance from the unperturbed interface to the tip of the
bubble represents the bubble amplitude ab, while the distance from the unperturbed interface
to the tip of the spike represents the spike amplitude as. The mixing layer width is defined as
the sum of the bubble and spike amplitudes

h(t) = ab(t) + as(t) . (5)

The mixing layer amplitude predicted by the models presented in this section is the average of
the bubble and spike amplitude

a(t) =
ab(t) + as(t)

2
(6)

=
h(t)
2

,

i.e., one-half the mixing layer width.
Impulsive models based on representing the shock as a δ-function acceleration are reviewed

in § 2.1. Models based on representing the vorticity deposited by the shock as point vortices
are reviewed in § 2.2. Models based on asymptotic expansions of the perturbed compressible
fluid dynamics equations are reviewed in § 2.3. Models based on potential theory are reviewed
in § 2.4. Scaling laws for multi-mode initial conditions are reviewed in § 2.5. Finally, models
for the deposition of circulation by a shock are reviewed in § 2.6.

2.1 Impulsive models

Impulsive models based on representing the shock as an instantaneous δ-function acceleration
are briefly reviewed and summarized here. Impulsive models for the Richtmyer-Meshkov in-
stability were developed by adapting existing models for the Rayleigh-Taylor instability to the
case of an impulsive acceleration. These models predict a linear growth in time for the mixing
layer that captures the early stages of the instability evolution before nonlinear effects become
dominant.
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Figure 4: Schematic of the bubble and spike amplitudes ab and as and the mixing layer width
h. The solid blue line represents a typical interface evolving according to the single-mode
Richtmyer-Meshkov instability with spikes penetrating the lighter fluid and rolling up, and
bubbles rising in the lighter fluid. The solid red line is the location of the shocked unperturbed
interface and is used as the reference to measure the bubble and spike amplitudes ab and as. The
mixing layer width is h = ab+as and the amplitude of the perturbation is a = (ab + as)/2. The
image is from a simulation of the Richtmyer-Meshkov instability using a point vortex method
[67].

2.1.1 The Richtmyer model

The first impulsive model proposed to predict the growth of a single-mode perturbation is due
to Richtmyer [106]. Richtmyer modified earlier work by Taylor [119] for the growth of a small
perturbation with amplitude a(t) and wavenumber k when a dense fluid is accelerated contin-
uously into a lighter fluid, and the fluids are initially separated by a single-mode interfacial
perturbation (the Rayleigh-Taylor instability). Taylor showed that the initial growth of the
amplitude of a perturbation under gravitational acceleration g is given by

d2a

dt2
= g Ak a , (7)

where
A =

ρ2 − ρ1

ρ2 + ρ1
(8)

is the Atwood number and ρ1 and ρ2 are the densities of the lighter and heavier fluid, re-
spectively. Richtmyer argued that, in the presence of a shock, the acceleration g is very large
during a very short time interval. Let

[u] =
∫
g dt (9)

represent the change in velocity imparted to the interface by the shock, so that integrating Eq.
(7) once gives

da
dt

= k [u]A− a−0 , (10)
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where a−0 ≡ a(0) is the initial (pre-shock) perturbation amplitude and A− is the pre-shock
Atwood number. Richtmyer argued that the use of a−0 is almost certainly incorrect, as the
initial amplitude is compressed by the shock, and therefore, a smaller value should be used.

To further understand the development of the instability, Richtmyer derived and solved
the perturbation equations in the case when the shock propagates from a lighter fluid into
a heavier fluid (A− > 0) using a finite-difference scheme. Richtmyer showed that agreement
between the numerical solution and the prediction of Eq. (10) is obtained when the post-shock
Atwood number A+ and post-shock amplitude a+

0 are used:

da
dt

= v0 , (11)

where the Richtmyer velocity is
v0 ≡ k [u]A+ a+

0 , (12)

so that

a(t) = a+
0 + v0 t (13)

=
(
1 + k [u]A+ t

)
a+

0 .

2.1.2 The Meyer-Blewett model

Meyer and Blewett [83] performed numerical simulations of the Richtmyer-Meshkov instability
and computed growth rates corresponding to a shock propagating from a light to a heavy gas
and from a heavy to a light gas. They found good agreement with Richtmyer’s formula, Eq.
(11), for the light to heavy case, but in the heavy to light case they found better agreement
by averaging the pre- and post-shock amplitudes

da
dt

= k [u]A+ a+
0 + a−0

2
, (14)

so that

a(t) = a+
0 + k [u]A+ a+

0 + a−0
2

t . (15)

2.1.3 The Fraley model

Fraley [41] presented an analytic solution to the linearized perturbation equations in the case
of a reflected shock wave. The complete set of linearized, compressible perturbation equations
was first considered by Richtmyer [106], who solved them numerically. Fraley reconsidered the
perturbation equations for a single-mode initial perturbation and solved the equations using
Laplace transform techniques in time. For weak shocks the solution is given by (see [18])

da
dt

= k [u] a−0

[
A− + ε

F (c, A−)
γ1

]
, (16)

where

F (c, A) =

{
(c− 1)2

2
− 1 +A

1−A
− c+

1
c

[
(1 +A)2

1−A
+ (1−A) c2

]}
1−A

c+ 1
, (17)

c =

√
(1 +A−) γ2

(1−A−) γ1
, (18)
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with the Richtmyer model of Eq. (10) recovered in the limit ε→ 0. Thus,

a(t) = a+
0 + k [u]

[
A− + ε

F (c, A−)
γ1

]
a−0 t. (19)

This solution was first recognized by Mikaelian [90] as the most accurate solution for the
initial growth of the perturbation. In particular, Mikaelian showed that when A+ is chosen to
be zero, the Richtmyer formula (11) predicts a zero growth rate—the so-called “freeze-out”.
However, numerical simulations do not show a freeze-out for A+ = 0. Instead, freeze-out is
observed when the values of the parameters in Eq. (16) are chosen so that da/dt = 0.

2.1.4 The Vandenboomgaerde et al. model

Vandenboomgaerde, Mügler and Gauthier [122] developed an amplitude growth model based
on modifying the impulsive acceleration assumption of Richtmyer [106]. Returning to the
Rayleigh-Taylor instability result for incompressible flows, Eq. (7), the constant values of the
acceleration g, Atwood number A, and amplitude a were replaced by linearly time-varying
values from the pre- to post-shock quantities. The linear variation occurs as the shock crosses
the interface between times t−0 = −a−0 /(2ushock) and t+0 = a−0 /(2ushock). Therefore,

g(t) =
ushock [u]

a−0
Y− (1− Y+) , (20)

A(t) = (1− Y−)A− + Y− (1− Y+)
[
ushock (A+ −A−) t

a−0
+
A+ +A−

2

]
+ Y+A

+ , (21)

a(t) = (1− Y−) a−0 + Y− (1− Y+)

[
ushock

(
a+

0 − a−0
)
t

a−0
+
a+

0 + a−0
2

]
+ Y+ a

+
0 , (22)

where Y± = Y (t− t±0 ) and Y (t) is the regularized Heaviside function

Y (t) ≡


0 t < −δ
t+δ
2 δ + sin

(
πt
δ

)
−δ ≤ t ≤ δ

1 t > δ

. (23)

Substituting Eqs. (20)–(22) into Eq. (7) and integrating gives

da
dt

=
1
2
k [u]

(
A+ a+

0 +A− a−0
)
− 1

6
k [u]

(
A+ −A−

)(
a+

0 − a−0
)
, (24)

so that

a(t) = a−0 + k [u]

{
A+ a+

0 +A− a−0
2

−
(A+ −A−)

(
a+

0 − a−0
)

6

}
t . (25)

Note that the last term on the right side, in which the difference in Atwood numbers across the
shock is multiplied by the difference in initial perturbation amplitudes, is usually very small
compared to the second term on the right side, and is therefore neglected. The Meyer-Blewett
formula (14) takes into account the variation in amplitude for a shocked interface, whereas the
above formulation also considers the change in Atwood number.

To determine the range of validity of Eq. (24), the predicted amplitude is compared to
the exact solution of the linearized perturbation equations provided by Fraley [41] using a
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normalized growth rate analysis. In this analysis [90], the normalized growth rates obtained
via Eq. (16) and Eq. (24) are plotted as a function of the shock strength. The region over
which the two formulae agree constitutes the region of validity for the Vandenboomgaerde
model. Such an analysis can also be applied to other amplitude growth models.

2.1.5 The Duff-Harlow-Hirt model for a diffuse interface in the Rayleigh-Taylor
instability

Duff, Harlow, and Hirt [39] performed Rayleigh-Taylor instability experiments in which a mix-
ture of argon-bromine falls under the influence of gravity into air or helium. To model the
growth rate observed in the experiments, a new model based on consideration of a diffuse
interface was developed. The analysis begins with the linear eigenvalue equation for the per-
turbation velocity u corresponding to a sinusoidally-perturbed, arbitrary density profile subject
to a gravitational acceleration (see [26])

d
dx

(
ρ

du
dx

)
=

(
ρ− g

$2

dρ
dx

)
u k2 (26)

d2a

dt2
= $2 a, (27)

where the eigenvalue $2 = gAk is appropriate for a discontinuous interface. For a diffuse
interface, Duff, Harlow, and Hirt proposed the profile

ρ(x) = ρ
[
1 +A erf

(x
δ

)]
, (28)

where
ρ =

ρ1 + ρ2

2
(29)

and δ is a diffusion lengthscale related to the mass diffusion coefficient D by

δ = 2
√
D t . (30)

Duff, Harlow, and Hirt proposed a reduction of the growth rate that accounts for a diffuse
interface

$2 =
g Ak

ψ
, (31)

where ψ is the growth reduction factor and is, in general, a function of the interface width and
the Atwood number. Substituting this expression into Eq. (27), ψ becomes the new eigenvalue
to be determined by the solution of

δ
d
dx

{[
1 +A erf

(x
δ

)] du
dx

}
= u

{
1 +A erf

(x
δ

)
− ψ

k

d
dx

[
erf
(x
δ

)]}
. (32)

For the case A = 0, Eq. (32) has solution given by the integral equation

u(x) =
∫ ∞

x
(ξ − x)u(ξ)

[
1− 2ψ

k
√
π

exp
(

ξ2

k2 δ2

)]
dξ . (33)

Expanding the velocity and the eigenvalue in a perturbation series for kδ � 1

u(x) = e−kx + k δ u1

(x
δ

)
+ (k δ)2 u2

(x
δ

)
, (34)

ψ = 1 + γ1 k δ + γ2 (k δ)2 , (35)
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and substituting in Eq. (33) gives

ψ = 1 +

√
2
π
k δ (36)

to lowest order. For the case of A 6= 0 the governing equations must be solved numerically.

2.1.6 The Mikaelian model for a diffuse interface in the Richtmyer-Meshkov in-
stability

Mikaelian [88] extended the work of Duff, Harlow, and Hirt [39] to the Richtmyer-Meshkov
instability. In addition to a diffuse interface given by Eq. (28), Mikaelian also considered the
density profile

ρ(x) = ρ [1 +A tanh (β x)] , (37)

used by Saffman and Meiron [111], where the transition from ρ1 to ρ2 occurs over a distance
1/β.

The equation for the amplitude evolution from the linear instability analysis is Eq. (27)
with $ given by Eq. (31). For the Rayleigh-Taylor instability, the solution is

aRT (t) = a0 e
$t (38)

= a0 exp
(
g Ak

ψ
t

)
.

For the Richtmyer-Meshkov instability, g = [u]δ(t) is substituted into Eq. (31) to give

aRM (t) = a−0 + a+
0

k [u]A+

ψ
t . (39)

Mikaelian then solved Eq. (27) for the two density profiles using an N -layer matrix method
[84, 85]. The solution converges rapidly, so that N = 202 corresponds closely with the solution
of the equations. In addition, predictions for the growth rate from a moment method [86],
which gives analytic (but approximate) expressions for the growth rate, were also compared
with the numerical predictions of the matrix method applied to the hyperbolic tangent initial
density profile of Eq. (37). The agreement was limited, as the moment method does not
include finite Atwood number effects.

2.1.7 The Brouillette-Sturtevant model for a diffuse interface

Brouillette and Sturtevant [21] followed the same procedure described by Mikaelian [88] with
a slightly different initial density profile

ρ(x) = ρ

[
1 +A erf

(
x

δ

)]
, (40)

where A = (A− +A+)/2, and δ = (δ− + δ+)/2. Note that δ is the characteristic width
of the interface, taken to be the maximum slope of the density profile at a time τ after
molecular diffusion ensues. The growth reduction factor is larger for smaller Atwood number,
and ψ = 1 + πδ/λ in the limit A→ 0. In the limit of a thin interface with δ/λ = 0, it follows
that ψ = 1. Also, ψ = 1 in the limit A→ 1.
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When the width of the interface is larger than the wavelength of the perturbation, δ/λ > 1,

ψ = 1 + C
δ

λ
, (41)

where C is a constant. This yields

da
dt

=
2π
δ

A+ [u] a+
0

C
, (42)

so that

a(t) =
(

1 +
2π
δ

A+ [u] a+
0

C
t

)
a+

0 . (43)

2.2 Point vortex models

Presented in this section are point vortex models for the two-dimensional Richtmyer-Meshkov
instability. These models represent the shocked interface by a finite set of point vortices with
positive and negative initial circulations Γ. In these models, the velocity field is represented
in terms of a streamfunction.

2.2.1 The Jacobs-Sheeley model

Jacobs and Sheeley [55] developed a point vortex model for the amplitude growth measured
in their incompressible (or impulsive) Richtmyer-Meshkov instability experiments. This model
was presented together with other models to reconcile their experimental results with the model
predictions available at the time. Jacobs and Sheeley considered the ‘impulsive Richtmyer-
Meshkov instability’ observed when a tank containing two liquids is impulsively accelerated by
rapidly decelerating it after a short drop. The use of liquids allows sharper initial interfaces
without the presence of a membrane, as liquids do not diffuse very rapidly. Furthermore, the
experimental configuration with the free-fall component removes any effect from gravity.

Jacobs and Sheeley argued that the appearance of mushrooms in the Richtmyer-Meshkov
instability is a manifestation of the coalescence of the initial sheet of vorticity into vortices
with well-defined cores located at the midpoints along the interface. The strength of the initial
vortex sheet γ can be computed using linear analysis as

γ(x) = −2 v0 sin (kx) , (44)

where v0 is the initial growth rate of the interface and k is the perturbation wavenumber. As
the vortex sheet coalesces into single point vortices, it is possible to determine the circulation

Γ =
∫ π/k

0
γ(x) dx (45)

= −4
k
v0 . (46)

Additional mechanisms for the production of vorticity can be neglected, as they are typically
much smaller compared to the baroclinic production mechanism arising from the passage of
the shock.
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Assume that a periodic array of point vortices with alternating signs is initially located
along the interface at points midway between the peaks and troughs of the initial perturbation.
The velocity field generated by this set of vortices is determined by the streamfunction

ψ(x, y) =
Γ
4π

ln
[
cosh (ky) + sin (kx)
cosh (ky)− sin (kx)

]
. (47)

As the instability evolves in time, the flow will distort the interface and wrap it around the
vortex cores. The growth of the mixing layer is determined by the velocity of the point located
between two successive vortices. The component of the velocity normal to the array of vortices
is

v(x, y) = −∂ψ
∂x

= −k Γ
2π

cosh (ky) cos (kx)
cosh2 (ky)− sin2 (kx)

. (48)

At the midpoints x = ±nπ/k, the normal velocity is given by

v(y) = ± 1
2π

k Γ
cosh (ky)

, (49)

and the vertical position y(t) is equivalent to the amplitude of the mixing layer a(t). Therefore,
the initial value problem for the amplitude

da
dt

= v(t) , a(0) = a+
0 (50)

is solved via a substitution from Eq. (45) with the result

a(t) =
1
k

sinh−1

[
2
π
k v+

0 t+ sinh
(
ka+

0

)]
. (51)

It was found that this model underestimates the observed data, but yields a late-time
logarithmic scaling of the amplitude, corresponding to a 1/t scaling of the velocity. To address
the discrepancy between the model prediction and the data, it was suggested that this model
becomes valid when the initial sheet of vorticity has had sufficient time to coalesce into a
single vortex. At this point, the interface has already developed for some time and, therefore,
a larger value for ka+

0 must be used. With this correction, the model overestimates the data,
but somewhat better agreement is obtained at late times.

2.2.2 The Likhachev-Jacobs model

Likhachev and Jacobs [74] modified the Jacobs-Sheeley [55] vortex model to allow for finite
Atwood numbers. In the Jacobs-Sheeley model, it is assumed that the vortices are evenly
spaced, which is valid only in the limit of very small Atwood numbers as the baroclinic pro-
duction mechanism rapidly breaks the symmetric spacing. Perturb the position of the positive
circulation vortices by a small positive distance εA (dependent on the Atwood number) and
the negative circulation vortices by a negative distance −εA, so that the streamfunction gen-
eralizing Eq. (47) is

ψ(x, y) =
Γ
4π

ln
{

cosh (ky) + sin [k (x+ εA)]
cosh (ky)− sin [k (x− εA)]

}
. (52)
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The vertical velocity component generalizing Eq. (48) is

v(x, y) =
k Γ cos(kεA)

2π
cosh(ky) sin(kx)− sin(kεA)

[cosh(ky)− cos(kx− kεA)] [cosh(ky) + cos(kx+ kεA)]
. (53)

Note that the row of perturbed vortices moves upward in the direction of the light fluid with
a constant velocity

v0 =
k Γ
4π

tan(kεA) . (54)

In a coordinate system moving with constant velocity v0, evaluating the vertical velocity at
the midpoints [so that y = ab or y = as when x = ±π/(2k)] gives the velocity of the bubbles
and spikes in the reference frame moving with speed v0

davb
dt

= −k
2 Γ
2π

[
cos(kεA)

cosh(avb) + sin(kεA)
− tan(kεA)

2

]
, (55)

davs
dt

=
k2 Γ
2π

[
cos(kεA)

cosh(avs)− sin(kεA)
− tan(kεA)

2

]
, (56)

respectively. The bubble and spike amplitudes are then translated into the laboratory frame
by

ab(t) = |avb| − v0 t , (57)
as(t) = |avs|+ v0 t . (58)

The initial circulation of Eq. (45) is now given by

Γ = −εΓ
4 v0
k

, (59)

where εΓ = 1.55 is a parameter that accounts for the uncertainty in the estimate of the circu-
lation in this new model. The predictions of this model were shown to be in good agreement
with the experimental results of Niederhaus and Jacobs [98] when kεA = 0.085 is chosen.

2.3 Perturbation models

Models based on the asymptotic expansion of the perturbation equations are reviewed here.
These models generate asymptotic series with limited radii of convergence: the convergence
can be improved using Padé approximants.

2.3.1 The Zhang-Sohn model

Zhang and Sohn [130] developed a model to investigate the growth rate of a two-dimensional
Richtmyer-Meshkov unstable interface, valid for compressible fluids from early to late times
in the case of a reflected shock (light-to-heavy transition). The dynamics of the initially-
perturbed interface are modeled using the linear, compressible flow equations for early times
and using the nonlinear, incompressible flow equations for later times.

Let y = η(x, t) denote the initial perturbation, and let φ1(x, y, t) and φ2(x, y, t) denote the
velocity potentials for the inviscid, irrotational fluids 1 and 2. Then, the differential equations

∇2φi = 0 in fluid i (60)
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govern the potential flow: the boundary conditions at the interface are given by

∂η

∂t

∣∣∣∣
y=η

− ∂φ1

∂x

∂η

∂x

∣∣∣∣
y=η

+
∂φ1

∂y

∣∣∣∣
y=η

= 0 (61)

∂η

∂t

∣∣∣∣
y=η

− ∂φ2

∂x

∂η

∂x

∣∣∣∣
y=η

+
∂φ2

∂y

∣∣∣∣
y=η

= 0 (62)

ρ1
∂φ1

∂t

∣∣∣∣
y=η

− ρ2
∂φ2

∂t

∣∣∣∣
y=η

+
ρ2

2

[(
∂φ2

∂x

)2

+
(
∂φ2

∂y

)2
] ∣∣∣∣

y=η

− ρ1

2

[(
∂φ1

∂x

)2

+
(
∂φ1

∂y

)2
] ∣∣∣∣

y=η

= 0 .

(63)

The initial conditions are

η(x, 0) = a+
0 cos (kx) ,

dη

dt

∣∣∣∣
t=0

= a+
0 σ cos (kx) , (64)

where
σ = k A+ [u] (65)

is a constant given by the linear initial growth predicted by the Richtmyer model [see Eq.
(11)].

A perturbation solution is assumed, and each term is further expanded in a series as

η(x, t) =
∞∑
n=1

η(n)(x, t) (66)

φi(x, y, t) =
∞∑
n=0

φ
(n)
i (x, y, t) (67)

η(n)(x, t) =
n∑
j=1

a
(n)
j (t) cos (jkx) (68)

φ
(n)
1 (x, y, t) =

n∑
j=0

b
(n)
1j (t) cos (jkx) e−jky (69)

φ
(n)
2 (x, y, t) =

n∑
j=0

b
(n)
2j (t) cos (jkx) ejky . (70)

Collecting terms of the same order leads to a system of ordinary differential equations in time
that can be easily integrated. The first three terms of the solution are given by

η(1)(x, t) =
(
a+

0 + a+
0 σ t

)
cos (kx)

η(2)(x, t) = 1
2 k
(
a+

0

)2
σ2A+ t2 cos (2kx)

η(3)(x, t) = − 1
24 k

2
(
a+

0

)3
σ
{[

4 (A+)2 + 1
]
σ2 t3 + 3σ t2 + 6 t

}
cos (kx)

+1
8 k

2
(
a+

0

)3
σ
{[

4 (A+)2 − 1
]
σ2 t3 − 3σ t2

}
cos (3kx)

. (71)

As evident from the expression for η(3), additional higher-order terms in the perturbation series
become quite complicated.
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The series approximation can be evaluated at the locations of the spike and bubble to
yield the mixing layer amplitude. The bubble and spike are located at x = 0 and x = π/k,
respectively; thus, the amplitude defined as half the distance between the spike and bubble is

a(t) =
1
2

[
η(0, t)− η

(π
k
, t
)]
. (72)

The above formulation yields an independent series for the spike and the bubble. These two
separate series can be used to evaluate models for the amplitude of the bubble or spike. The
growth of the mixing layer is given by

da
dt

= v0

{
1− k2 v0 t a

+
0 +

[(
A+
)2 − 1

2

]
k2 v2

0 t
2

}
, (73)

where k is the wavenumber of the initial perturbation, and v0 is the Richtmyer velocity (12).
Unfortunately, the range of validity of this finite Taylor series approximation is limited. For
this reason, Padé approximations (see below) are used to extend the approximation into the
nonlinear regime:

da
dt

=
v0

1 + k2 v0 a
+
0 t+ max

[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
k2 v2

0 t
2
. (74)

Thus, the amplitude is given by

a(t) =
2

k

√
4 max

[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
−
(
k a+

0

)2
× tan−1


k a+

0 + 2 max
[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
k v0 t√

4 max
[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
−
(
k a+

0

)2
 . (75)

The choice of the Padé approximant P 0
2 for

(
ka+

0

)2 ≥ (A+)2 − 1/2 and P 0
1 for

(
ka+

0

)2 ≤
(A+)2−1/2 matches the asymptotic growth observed experimentally for large t. The amplitude
growth predicted by the model was in excellent agreement with numerical simulation results
and with experimental data obtained using air/SF6.

To clarify the role of Padé approximations, a brief review following Bender and Orszag [16]
is presented. Padé approximations arise in the context of summation of perturbation series. It
is often the case that only a few terms are available when a perturbation series is formed for
a small parameter ε. These terms often converge very slowly to the desired solution, or they
may diverge due to the existence of a singularity. Padé approximations offer the possibility
of improving the behavior of diverging perturbation series based on the knowledge of only
a few terms. Padé approximations are also used to improve the convergence properties of
diverging power series. In many instances, the regular power series may diverge as it reaches
the boundaries of the region of convergence: Padé approximants can further extend the range
of validity.

In a Padé approximation, the power series
∑

n anz
n is replaced by a sequence of rational

functions PNM called the Padé approximants. The indicesM andN denote the order of the poly-
nomial in the denominator and in the numerator, respectively. Thus, the Padé approximant
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can be expressed as

PNM (z) =
∑N

n=0An z
n∑M

n=0Bn z
n

(76)

with coefficients {An}Nn=0 and {Bn}Mn=0. Note that, without loss of generality, B0 = 1. The
other M+N+1 terms are chosen so that the first M+N+1 terms in the Taylor series for PNM
match the M + N + 1 terms in the series

∑
n anz

n. As M and N increase, PNM (z) converges
even if the series

∑
n anz

n diverges or even in regions where the series summation is no longer
convergent.

It is straightforward to determine the values of the coefficients of a Padé series given the
series

∑
n anz

n. The coefficients Bi satisfy the matrix equation

C


B1

B2
...

BM

 = −


aN+1

aN+2
...

aN+M

 , (77)

Cij = aN+i−j . (78)

The elements of the matrix C are constant along diagonals. Also note that if the index
N + i− j < 0, then its value can be taken to be zero. Once the Bi are determined, the Ai are
computed as

Ai =
i∑

j=0

ai−j Bj , (79)

and Bj = 0 for j > M .

2.3.2 The Vandenboomgaerde et al. model

Vandenboomgaerde, Gauthier, and Mügler [121] proposed a simplified version of the pertur-
bation expansion of Zhang and Sohn [130]. First, choose

σ =
k [u]

2

(
A+ +

A−

1− [u]
ushock

)
(80)

so that a0σ gives the right side of Eq. (24). Noting that an accurate perturbation series can
be obtained by retaining only the secular terms (i.e., the terms with the largest unbounded
part), only the largest power from each term of the Zhang and Sohn solution Eq. (71) must
be retained. This yields

η(1)(x, t) =
(
a+

0 + a+
0 σ t

)
cos (kx)

η(2)(x, t) = 1
2

(
a+

0

)2
k σ2A+ t2 cos (2kx)

η(3)(x, t) = −1
8 k

2
(
a+

0

)2
σ3 t3

{
1
3

[
4 (A+)2 + 1

]
cos (kx)−

[
4 (A+)2 − 1

]
cos (3kx)

} . (81)

Such an approximation is usually valid for large times, but in this case the first two terms
of the series are identical to the series of Zhang and Sohn, so that good agreement is expected
between the predictions of this model and the Zhang-Sohn model, even at small times. Another
advantage of this method is that high-order terms can be easily computed. As only the
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high-order terms in the series are retained, the determination of the coefficients shifts from
integrating in time to solving an algebraic system. Using this method gives the series solution
up to eleventh-order for the growth of the mixing layer:

a(t) = a+
0 +

1
k

5∑
n=0

P2n+1

(
ka+

0 σt
)2n+1

, (82)

where

P1(x) = 1
P3(x) = −1

6

(
1− 2x2

)
P5(x) = 1

240

(
19− 125x2 + 92x4

)
P7(x) = − 1

5040

(
264− 3686x2 + 6997x5 − 3234x6

)
P9(x) = 1

2903040

(
117663− 2855274x2 + 10086083x4 − 11093856x6 + 3805728x8

)
P11(x) = − 1

159667200(5507319− 206796915x2 + 1168865775x4 − 2250383605x6

+1755444326x8 − 483163144x10)

(83)

This series solution diverges at t ≈ (ka+
0 σ)−1; therefore, Padé approximants are used to extend

the validity of the solution. Note that the Padé approximation is constructed for the amplitude
growth rate da/dt and not for the amplitude itself a(t), which yields better results and is also
in the spirit of the work of Zhang and Sohn [130]. The growth rate is given by the tenth-degree
polynomial

da
dt

= a+
0 σ

5∑
n=0

(2n+ 1)P2n+1

(
ka+

0 σt
)2n

. (84)

A P 4
6 Padé approximant is constructed as

P 4
6 (t) =

∑4
n=0An

(
ka+

0 σt
)n∑6

n=0B
n
n

(
ka+

0 σt
) (85)

with the Padé coefficients {An} and {Bn} computed as described above (the values are not
presented here as the analytical expressions are complicated and can be easily computed).

2.3.3 The Matsuoka-Nishihara-Fukuda model

Matsuoka, Nishihara, and Fukuda [79] proposed a new formulation of the kinematic boundary
conditions in the perturbation expansion of the Zhang-Sohn potential flow to account for
stretching at the interface. They replaced Eqs. (61) and (62) with

u · n =
ρ1∇φ1 · n + ρ2∇φ2 · n

ρ1 + ρ2

∣∣∣∣
y=η

(86)

u · s =
ρ1∇φ1 · s + ρ2∇φ2 · s

ρ1 + ρ2

∣∣∣∣
y=η

, (87)

where
u ≡ ρ1 u1 + ρ2 u2

ρ1 + ρ2
(88)

is the average, density-weighted velocity, s is the tangential vector to the interface, and n is the
normal vector to the interface. The perturbation expansion is performed and yields different
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expansions for the bubble and spike. When the first three terms are considered, the bubble
and spike velocities are

dab
dτ

=
(
−A2 +

1
2

)
τ2 +

(
−2A2 â0 +A+ â0

)
τ +

(
−2A2 +

3
2

)
â2

0 +
A â0

2
− 1 , (89)

das
dτ

=
(
A2 − 1

2

)
τ2 + (2A â0 +A− â0) τ +

(
2A2 − 3

2

)
â2

0 +
A â0

2
+ 1 , (90)

where â0 = 2πa+
0 /λ is a dimensionless initial perturbation amplitude, and τ = kv0t is a rescaled

time. Note that this model includes a dependence on the initial perturbation amplitude. The
radius of convergence of the perturbation series can be extended using a P 0

2 Padé approximant
to give

dab
dτ

=
α3
b[

αb
(
A2 − 1

2

)
+ (−2A2 â0 +A+ â0)

2
]
τ2 − αb (−2A2 â0 +A+ â0) τ + α2

b

(91)

das
dτ

=
α3
s[

αs
(
A2 − 1

2

)
+ (2A2 â0 +A− â0)

2
]
τ2 − αs (2A2 â0 +A− â0) τ + α2

s

, (92)

where

αb =
(
−2A2 +

3
2

)
â2

0 +
A â0

2
− 1 (93)

αs =
(

2A2 − 3
2

)
â2

0 +
A â0

2
+ 1 . (94)

2.4 Potential flow models

Potential flow models can describe the amplitude evolution of both the Rayleigh-Taylor and
Richtmyer-Meshkov instabilities through the late-time, nonlinear regime by the evolution of
the bubble and spike velocity. Layzer [71] developed the first potential flow model to describe
the Rayleigh-Taylor instability, which was subsequently extended to the Richtmyer-Meshkov
instability by others. These models predict that the bubble velocity in a Richtmyer-Meshkov
instability approaches zero at asymptotic times.

2.4.1 The Layzer model for the Rayleigh-Taylor instability

Layzer [71] derived analytic solutions for the flow observed when an ideal, incompressible fluid
contained in the upper half of a vertical tube falls under the action of gravity. In the exper-
iments, the lower half of the tube was empty and the surface was initially flat. Disturbances
were applied so that a single “vacuum” bubble rose at the center of the tube. Layzer obtained
solutions for the velocity of the bubble tip in the case of a two-dimensional channel and a
three-dimensional circular tube. Note that the density ratio of the two fluids in the system
above is effectively infinite, corresponding to an Atwood number A = 1.

For inviscid fluids initially at rest, the velocity field can be described by a scalar potential
φ(x, y, t) and φ(x, y, z, t) in two and three dimensions, respectively, satisfying the Laplace and
Bernoulli equations. The Laplace equation is

∇2φ = 0 , (95)
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 in two dimensions and ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in three
dimensions. The Bernoulli equations are

∂φ

∂t

∣∣∣∣
y=η

− 1
2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2
] ∣∣∣∣

y=η

− g η

∣∣∣∣
y=η

= constant , (96)

∂φ

∂t

∣∣∣∣
z=η

− 1
2

[(
∂φ

∂r

)2

+
(
∂φ

∂z

)2
] ∣∣∣∣

z=η

− g η

∣∣∣∣
z=η

= constant (97)

in two and three dimensions, respectively, where the three-dimensional equation is written in
polar coordinates. The interface further satisfies the kinematic condition

∂φ

∂z

∣∣∣∣
y=η

=
∂η

∂t

∣∣∣∣
y=η

+
∂φ

∂x

∂η

∂x

∣∣∣∣
y=η

, (98)

∂φ

∂z

∣∣∣∣
z=η

=
∂η

∂t

∣∣∣∣
z=η

+
∂φ

∂r

∂η

∂r

∣∣∣∣
z=η

, (99)

in two and three dimensions, respectively. The ansatz for the perturbation is

φ(x, y, t) = F (t) e−y cosx , (100)
φ(r, z, t) = F (t) e−z J0(r) (101)

in two and three dimensions, respectively, where J0(r) is the Bessel function of order zero and
is used to simulate a perturbation with cylindrical symmetry.

Let g = 1 and define

T (t) = 1 +
∫ t

t0

F (t) dt, (102)

so that F (t) ≡ dT (t)/dt and η satisfy

eη = T

[
1− r2

8

(
1− 1

T 2

)]
. (103)

Substituting these expressions into the Bernoulli equation gives a nonlinear ordinary differential
equation

T
(
T 2 + 1

) d2T

dt2
−
(

dT
dt

)2

− T 2
(
T 2 − 1

)
= 0 , (104)

T
(
2T 3 + 1

) d2T

dt2
−
(
T 3 − 1

)(dT
dt

)2

− T 2
(
T 3 − 1

)
= 0 (105)

in two and three dimensions, respectively.
Let aRTb (t) denote the amplitude of the Rayleigh-Taylor bubble, related to T (t) by

aRTb (t) = log T (t) , (106)

and let vRTb denote the velocity of the bubble. Then, for aRTb (0) = 0, it follows that Eqs. (104)
and (105) can be integrated to give

vRTb (t) =
daRTb

dt
(107)

=

√
exp

(
3 aRTb

)
− 3 η − 1

3
[
exp

(
3 aRTb

)
+ 1

2

] ,
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vRTb (t) =
daRTb

dt
(108)

=

√
exp

(
2 aRTb

)
− 2 η − 1

exp
(
2 aRTb

)
+ 1

in two and three dimensions, respectively. These equations can then be integrated to obtain
the position of the bubble tip. For late times, the asymptotic velocities are

vRTb =
√

g

3 k
, (109)

vRTb =

√
g R

β1
(110)

in two and three dimensions, respectively, where β1 ≈ 3.832 is the first zero of the Bessel
function of order one, and R represents the radius of the tube.

2.4.2 The Hecht-Alon-Shvarts model for the Richtmyer-Meshkov instability

Hecht, Alon, and Shvarts [45] extended the Layzer model to the Richtmyer-Meshkov instability.
The two-dimensional equations for the potential φ are modified so that g = 0, and an initial
velocity perturbation vRMb (0) equal to the change in velocity after the shock is introduced.
The late-time velocity is

vRMb (t) =
2

3 k t
, (111)

and is independent of the initial velocity perturbation. The asymptotic bubble curvature is

κ =
3λ
2π

, (112)

which is also the same as for Rayleigh-Taylor bubbles. The predictions of this model were in
good agreement with numerical simulations for A = 1.

2.4.3 The Mikaelian model for arbitrary initial perturbations

Mikaelian [92] extended the Layzer model to the case when ab(0) 6= 0 for both the Rayleigh-
Taylor and the Richtmyer-Meshkov instability. Equations for the bubble velocity in the
Rayleigh-Taylor and Richtmyer-Meshkov instabilities were derived in two- and three-dimensional
geometries. The late-time limit of vRTb in two and three dimensions was shown to be consis-
tent with the values determined by Layzer in Eqs. (109) and (110), respectively. For the
Richtmyer-Meshkov instability, the late-time two- and three-dimensional bubble velocities are

vRMb (t) =
2

3 k t
, (113)

vRMb (t) =
R

β1 t
, (114)

respectively, in agreement with the earlier result of Hecht, Alon and Shvarts [45] in Eq. (111).
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2.4.4 The Zhang model for the velocity of spikes

Zhang [129] extended the Layzer model to determine the velocity of spikes for both the
Richtmyer-Meshkov and the Rayleigh-Taylor instabilities in two and three dimensions. Ex-
pressions for the spike and bubble velocity were determined by assuming that the interface is
locally parabolic,

η(y, t) = a(t) + ξ(t) k y2 . (115)

Substitution into the governing equations gives a system of ordinary differential equations for
a(t) and ξ(t) in terms of F (t) from Eq. (100):

da
dt

= F k e−ka , (116)

dξ
dt

= −F k2

(
3 ξ +

1
2

)
e−ka , (117)

k e−ka
(
ξ +

1
2

)
dF
dt

= −F 2 k3 ξ e−2ka − g ξ . (118)

Eliminating F (t) from the first two equations yields

ξ(a(t)) =
{[
ξ(0) +

1
6

]
e−3k[a−a(0)] − 1

6

}
(119)

and a nonlinear ordinary differential equation for v(t) = da(t)/dt = v(ξ(t)):

−k
2

4
(6 ξ + 1)

dv2

dξ
+

k2

2 ξ + 1
v2 +

2 ξ
2 ξ + 1

g = 0 . (120)

Given a solution of Eq. (120), an expression v = v(a(t)) can be obtained via the substitution
ξ = ξ(a(t)) in Eq. (119) to give the velocity of the bubble and spike,

v =

√
9 [2 ξ(0) + 1] k v(0)2 − 6 [6 ξ(0) + 1][a− a(0)] k g + 2

(
e3k[z−z(0)] − 1

)
g

3 k
[
6 ξ(0) + 1 + 2 e3k[a−a(0)]

] . (121)

In the case of a sinusoidal initial perturbation, ξ(0) = −a(0)k/2 for the bubble and ξ(0) =
a(0)k/2 for the spike. The late-time asymptotic solutions are

vRTb (t→∞) =
√

g

3 k
ξRTb −→ −1

6
(122)

vRTs (t→∞) = −g t ξRTs −→ ∞ (123)

vRMb (t→∞) =
2

3 k t
ξRMb −→ −1

6
(124)

vRMs (t→∞) = v0

√
6 ξ0 + 3
6 ξ0 + 1

ξRMs −→ ∞ , (125)

where b and s denote the bubble and spike, respectively. The novel components of this model
are the spike equations (123) and (125). The equations for the bubble in two dimensions, (122)
and (124), were previously derived by Layzer [71] in Eq. (109) and by Hecht, Alon and Shvarts
[45] in Eq. (113). The model predicts constant linear acceleration for a spike in the Rayleigh-
Taylor instability and constant velocity in the Richtmyer-Meshkov instability (depending on
the initial conditions v0 and ξ0). The solutions are consistent with the results of numerical
computations based on conformal mapping [81] and on finite-differencing [7].
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2.4.5 The Goncharov model for arbitrary Atwood numbers

Goncharov [42] extended the two-dimensional Layzer model to the case of A 6= 1 for both the
Rayleigh-Taylor and the Richtmyer-Meshkov instability. The Bernoulli equation is modified
to include the density, and is given at y = η by{

ρ1
∂φ1

∂t
+
ρ1

2

[(
∂φ1

∂x

)2

+
(
∂φ1

∂y

)2
]

+ ρ1 g y

}

−

{
ρ2
∂φ2

∂t
+
ρ2

2

[(
∂φ2

∂x

)2

+
(
∂φ2

∂y

)2
]

+ ρ2 g y

}
= f(t) , (126)

where f(t) is an arbitrary function, and η(t) is given by Eq. (115). The velocity potentials for
the two fluids φ1 and φ2 assume the form

φ1(x, y, t) = a1(t) cos (kx) e−k(y−η0) , (127)

φ2(x, y, t) = b1(t) cos (kx) ek(y−η0) + b2(t) y , (128)

where a1, b1 and b2 are unknown functions. The form of the potential is dictated by the
boundary conditions. The equations are again expanded around (115) and solved. Note that
ξ is related to the curvature by κ = −1/(2ξ). The final results for the bubble velocities are

vRTb (t→∞) =

√
2Ag

3 (1 +A) k
, ξRTb −→ −k

6
, (129)

vRMb (t→∞) =
3 +A

3 (1 +A) k t
, ξRMb −→ −k

6
. (130)

The spike velocity for the Rayleigh-Taylor instability in two dimensions is given by

vRTs (t→∞) =

√
2Ag

3 (1−A) k
. (131)

Comparison of the model predictions with numerical simulations shows that the spike velocity
does not saturate for A > 0.1, indicating that additional mechanisms not captured by the
model are important.

The analysis is extended to three dimensions and the velocities of the bubble are given by

vRTb (t→∞) =

√
2Ag

(1 +A) k
, ξRTb −→ −k

8
, (132)

vRMb (t→∞) =
2

(1 +A) k t
, (133)

for the Rayleigh-Taylor and Richtmyer-Meshkov instability, respectively.

2.4.6 The Mikaelian model for the evolution of the single-mode Rayleigh-Taylor
and Richtmyer-Meshkov instability

Mikaelian [93] presented a simple analytic expression for the evolution of a single-mode Rayleigh-
Taylor and Richtmyer-Meshkov instability by using a technique attributed by Layzer [71] to
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Fermi. In this technique, the perturbation amplitude grows in the linear regime until the
asymptotic velocity is attained. After this time, the amplitude is given by solving the ordinary
differential equation for the asymptotic velocity. When applied to the Rayleigh-Taylor and
Richtmyer-Meshkov instabilities, this technique is modified so that the transition from the lin-
ear to asymptotic velocities is determined by the amplitude of the perturbation rather than by
the velocity. The asymptotic velocities used for the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities are the asymptotic bubble velocities of the Goncharov model.

The amplitudes given by the linear theory for the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities in the case of a single-mode initial perturbation are

aRT (t) = a0 cosh
(√

g k A t
)
, (134)

aRM (t) = a+
0

(
1 + [u] k A+ t

)
, (135)

and for a three-dimensional initial perturbation with cylindrical symmetry of radius R

aRT (t) = a0 cosh

(√
g β1A

R
t

)
, (136)

aRM (t) = a+
0

(
1 +

[u]β1A
+

R
t

)
, (137)

where β1 ≈ 3.832 is the first zero of the Bessel function of order one.
For the Rayleigh-Taylor instability, the transition between the linear and asymptotic model

is taken at a = 1/(3k) in two dimensions, giving the amplitude

aRT (t) = a0 +
3 +A

3 (1 +A) k
ln

{
cosh

[√
6 g k A (1 +A)

3 +A
t

]

+
vRT (0)

vRTb (t→∞)
sinh

[√
6 g k A (1 +A)

3 +A
t

]}
,

(138)

where vRTb (t → ∞) is given by Eq. (129). For three dimensions, the transition occurs at
a = R/(2β1), yielding

aRT (t) = a0 +
2R

β1 (1 +A)
ln

{
cosh

[√
g β1A (1 +A)

2R
t

]

+
vRT (0)

vRTb (t→∞)
sinh

[√
g β1A (1 +A)

2R
t

]}
,

(139)

where vRTb (t→∞) is given by Eq. (132).
For the Richtmyer-Meshkov instability in two dimensions, the transition is taken at a =

1/(3k), giving the amplitude

aRM (t) = a+
0 +

3 +A+

3 (1 +A+) k
ln
[
1 +

3 vRM (0) k (1 +A+)
3 +A+

t

]
. (140)

The asymptotic velocity derived from this expression is in agreement with Eq. (130). In three
dimensions, the transition occurs at a = R/(2β1), giving

aRM (t) = a+
0 +

2R
(1 +A+)β1

ln
[
1 +

vRM (0)β1 (1 +A+)
2R

t

]
. (141)

The asymptotic velocity derived from this expression is in agreement with Eq. (133).
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2.4.7 The Sohn model

Sohn [115] also extended the Layzer model to fluids with arbitrary density ratio. The approach
differs from the Goncharov model in the use of a simpler form for the potential functions from
Layzer [71] in Eq. (100). The shape of the interface near a bubble tip is assumed to be
parabolic [see Eq. (115)]. Substituting this form and expanding yields the system of equations
of Zhang, Eqs. (116)–(118), with Eq. (118) now modified to include an arbitrary Atwood
number:

k e−ka
(
ξ +

1
2

)
dF
dt

= −AF 2 k3 ξ e−2ka −Ag ξ . (142)

The asymptotic bubble velocities are determined by solving the evolution equations to obtain

vRTb −→

√
Ag

(2 +A) k
, ξRTb −→ −k

6
, (143)

vRMb (t) −→ 2
(2 +A) k t

, ξRMb −→ −k
6
. (144)

The predictions of this model were validated against numerical simulations in two dimensions.

2.4.8 The Abarzhi models

Abarzhi [1] also considered a potential flow model with a single-mode approximation. Near
highly symmetric points such as at the tip of the bubble or at the tip of the spike, the potential
function φ and the free surface η can be expanded in a Fourier series. The Fourier series is
then truncated and the equations are expanded around the periodic directions x = 0 and y = 0
and at the interface z = η. If κ(t) represents the curvature at the symmetric point, then the
expansion is valid if (

v0
cs

)2

� 1 , |κ(0)|λ� 1 . (145)

The first condition requires that the flow must be incompressible, and the second condition
requires the surface to be nearly flat initially. In addition to the two-dimensional sinusoidal
initial perturbation, various symmetric flow configurations are considered in three dimensions,
including a tubular, a hexagonal, and a square configuration. The late-time velocities for
bubbles and spikes in each configuration are given by

2D
2 vRMb t

λ
= 0.212 ,

vRMs
v0

=
√

3 (146)

3D tubular
2 vRMb t

λ
= 0.261 ,

vRMs
v0

=
√

2 (147)

3D hexagonal
2 vRMb t

λ
= 0.275 ,

vRMs
v0

=
√

2 (148)

3D square
2 vRMb t

λ
= 0.319 ,

vRMs
v0

=
√

2 . (149)

The values for the radius of curvature R were also determined. For spikes, the radius of
curvature scales as

R ∼ −λ
2

e−t/t0 , (150)
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where
t0 ∼

1
k |v0|

(151)

is a characteristic timescale of the system. The late time radii of curvature are given by

2D
2RRMb
λ

= 0.955 ,
λ

2 |v0| t0
= 16.32 (152)

3D tubular
2RRMb
λ

= 1.044 ,
λ

2 |v0| t0
= 10.84 (153)

3D hexagonal
2RRMb
λ

= 1.103 ,
λ

2 |v0| t0
= 10.26 (154)

3D square
2RRMb
λ

= 1.274 ,
λ

2 |v0| t0
= 8.89 . (155)

The results indicate that the dynamics of the spike are governed by the initial conditions. By
contrast, the bubble velocity decreases asymptotically and the curvature approaches a finite
value independent of the initial conditions.

In later work [2, 3], the Layzer-type approach was generalized to include additional modes.
This generalization allows the modeling of the interaction of harmonics in the nonlinear regime
and also recovers the flat bubble top observed in experiments and in numerical simulations.
In addition, it is observed that at late times a single-mode solution violates the condition of
continuity of the normal component of the velocity at the interface, and is therefore unphysical.
In the new approach, the potential function is represented as

φ(x, y, z) =
∞∑
m=0

∞∑
n=0

φmn(t)

[
cos (mkx) cos (nky)

e−kz
√
m2+n2

k
√
m2 + n2

+ z

]
. (156)

Retaining only one harmonic yields the Layzer-type solution. When additional harmonics are
included, a new solution for the bubble velocity can be obtained by asymptotic expansions. It
is found that the radius of curvature satisfies the asymptotic relation

RRMb ∼ 1
k

(
t

t0

)β∞
, (157)

where the exponent β∞ is expected to be negative, recovering the flattening of the bubble top.
The new velocities are given by

2D
2 vRMb t

λ
= 0.66 , β∞ = −2.27 (158)

3D hexagonal
2 vRMb t

λ
= 1.12 , β∞ = −2.24 (159)

3D square
2 vRMb t

λ
= 1.28 , β∞ = −2.42 . (160)

The results indicate that the flat bubbles rise much faster than the bubbles with finite curva-
ture.

Finally, the results were extended to fluids with a finite density ratio [4, 5] using the same
multiple harmonic expansion technique. It was found that in the linear regime, t < λ/v0, where
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v0 is the initial Richtmyer velocity of Eq. (11), the velocities and curvatures of the bubbles
scale as

2D vRMb − v0 ∼
v2
0 t

λ
, κRMb ∼ −k t v0

λ
(161)

3D hexagonal vRMb − v0 ∼
v2
0 t

λ
, κRMb ∼ 4πt v0

λ2
√

3
(162)

3D square vRMb − v0 ∼
v2
0 t

λ
, κRMb ∼ 2πt v0

λ2
. (163)

For times well into the nonlinear regime, t� λ/v0, all of the velocities and curvatures scale as

vRMb =
3

Ak t
, κRMb = 0 . (164)

2.4.9 The Sadot et al. empirical model for the Richtmyer-Meshkov instability

The Sadot et al. [99] empirical model for the Richtmyer-Meshkov instability is based on fits to
experimental data and on asymptotic growth laws. The model was presented in the context
of providing a single formula that could capture the initial linear growth, as well as the later
nonlinear growth for both the bubbles and the spikes. Let ab(t) and as(t) denote the amplitudes
of the bubbles and spikes, and let v0 = kA+[u]a0 be the Richtmyer velocity, but using the post-
shock Atwood number. The Sadot model for the velocities of the bubble, spike, and mixing
layer is

dab
dt

=
v0 (1 + k v0 t)

1 + (1 +A+) k v0 t+ 1
2πC k

2 v2
0 t

2
, (165)

das
dt

=
v0 (1 + k v0 t)

1 + (1−A+) k v0 t+ 1−A+

1+A+
1

2πC k
2 v2

0 t
2
, (166)

da
dt

=
1
2

(
dab
dt

+
das
dt

)
. (167)

The value of C is determined using experimental data, and it is found that for A+ ≥ 0.5,
C = 1/(3π). In the limit A+ → 0, C = 1/(2π). For intermediate values of the Atwood
number, the value of C is poorly-determined. The bubble and spike amplitudes corresponding
to these growth rates are

ab(t) = ab(0) +
2− 2πC (1 +A+)

k
√

2
πC − (1 +A+)2

tan−1

 1 +A+ + k v0 t
πC√

2
πC − (1 +A+)2

 (168)

+
π C

k
ln

[
1 +

(
1 +A+

)
k v0 t+

(k v0 t)
2

2πC

]
,

as(t) = as(0) +
2− 2πC (1 +A+)

k
√

2
πC

1−A+

1+A+ − (1−A+)2
tan−1

 1−A+ + 1−A+

1+A+
k v0 t
πC√

2
πC

1−A+

1+A+ − (1−A+)2

 (169)

+
π C

k

1 +A+

1−A+
ln

[
1 +

(
1−A+

)
k v0 t+

1−A+

1 +A+

(k v0 t)
2

2πC

]
.
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This model was extensively tested against experimental data, and excellent agreement was
found for both the spike and bubble growth. Furthermore, the model appears to be valid over
the range Ma = 1.3–3.5. As the model is mainly based on incompressible flow considerations,
the authors conclude that compressibility effects are not significant in modeling the growth of
the mixing layer.

2.5 Power-law models for multi-mode initial perturbations and following
reshock

Scaling laws for the mixing layer amplitude or width arising from a multi-mode initial interfacial
perturbation and following reshock of an evolving interface are presented here. In both cases,
the shock-interface interaction generates a complex and possibly turbulent mixing layer at
late times. The determination of the late-time or asymptotic scaling laws for the growth of
the mixing layer in the Richtmyer-Meshkov instability remains an open question, and is not
considered in the present work.

Multi-mode initial perturbations are particularly relevant, as such perturbations are typ-
ically found in nature, e.g., at the interfaces separating gas layers in supernovae and at the
material interfaces in inertial confinement fusion (ICF) capsules. Understanding the effects
of reshock, occurring as the interface undergoes multiple impulsive accelerations by waves, is
also of great interest. Reshock occurs in a shock tube experiment when the transmitted shock
following the initial interaction with the interface reflects from the end wall of the test section
and interacts with the evolving interface. Following reshock, a transmitted shock continues
in the first fluid and a reflected rarefaction wave returns into the second fluid. The reflected
rarefaction wave reflects from the end wall and interacts again with the evolving interface,
generating a reflected compression wave. The reflected compression wave reflects from the end
wall and again interacts with the evolving interface. Eventually, the interface comes to rest
following a sufficient number of such interactions. Each interaction with a reflected wave de-
posits additional baroclinic vorticity on the complex evolving interface, and imparts additional
energy into the mixing layer. The amount of energy deposited depends on the characteristic of
the small scales: for this reason, different growth characteristics are expected in the reshocked,
single-mode Richtmyer-Meshkov instability than in the multi-mode Richtmyer-Meshkov insta-
bility without reshock.

2.5.1 The Alon et al. bubble merger model for A = 1

Alon et al. [6] developed a statistical bubble merger model for the late-time evolution of a
two-dimensional Richtmyer-Meshkov bubble front in the limit A = 1 corresponding to fluids
with very large density ratios; the choice of the Atwood number allows the use of potential
theory to model the flow. The use of bubbles is justified by the observation that the late-time
evolution of a Richtmyer-Meshkov unstable interface can be modeled by the rise and merger
of large bubbles.

The bubbles are characterized by their diameter or wavelength λi and are initially arranged
along a line with some distribution for λ given by g(λ). The bubbles begin rising at velocities

vb(λi) =
λi
3πt

(170)

and two adjacent bubbles merge at the rate ω(λi, λi+1), giving rise to a new bubble of diameter
λi + λi+1 with velocity vb(λi + λi+1). The amplitude of the interface ab(t) is obtained using
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the average of the bubble velocities,
dab
dt

= 〈vb〉 . (171)

As observed earlier [8], the dynamics eventually reach a scale-invariant regime in which the
distribution of the bubble sizes scales with the average bubble size. In this regime, the mean
bubble velocity 〈vb〉, the average wavelength 〈λ〉, and the scaling exponent θb satisfy the rela-
tions

〈vb〉 =
〈λ〉
3πt

, (172)

d〈λ〉
dt

=
θb 〈λ〉
t

, (173)

θb =
∫ ∞

0

∫ ∞

0
$0

(
x

y

)
f(x) f(y) dxdy , (174)

where $0(x/y) is the dimensionless merger rate and f(x) is the scaled distribution function
that is independent of the initial distribution of bubbles. These equations yield the power-law
scaling

ab(t) ∼ a(λ0, θb)
(
t

t0

)θb

, a(λ0, θb) =
λ0

3π θb
(175)

for the width of the bubble front in Richtmyer-Meshkov unstable flows, where t0 is an arbitrary
time in the scale-invariant regime, λ0 is the average wavelength at that time, and θb = 0.4.
This scaling can also be related to the initial conditions (see [7]) by

ab(t) =
cB λ0

θb

[
vb(0) t
λ0 η

]θb

, (176)

where λ0 and vb(0) are the average initial wavelength and bubble velocity, η = O(1) is a
parameter depending on the initial spectrum, and cB is the scaling constant in the scale-
invariant regime with 〈vb〉 = cB〈λ〉/t. Comparison with numerical simulations showed good
agreement with the model prediction.

The model was later extended to arbitrary density ratios [7] by assuming that the merger
rate $ of Eq. (174) is insensitive to Atwood number variations. Therefore, the scaling law
with θb = 0.4 does not change for smaller Atwood numbers. A scaling law was also derived for
the amplitude of the spikes

as(t) ∼ λ0

(
u0 t

λ0

)θs(A)

, (177)

where
θs(A) = 1− β(A) (1− θb) (178)

depends on the Atwood number. The sum h = ab + as gives the total mixing layer width
corresponding to a multi-mode Richtmyer-Meshkov instability at all Atwood numbers.

2.5.2 The Rikanati et al. vortex model for bubble merger when A→ 0

Rikanati, Alon and Shvarts [108] reconsidered the modeling of the bubble merger process in
the limit of A → 0. Noting that the potential flow model (which is the basis of the Alon et
al. [6] model) is no longer appropriate at small Atwood numbers, an alternative model based
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on the Jacobs and Sheeley [55] vortex model was proposed, as vortices form shortly after the
passage of the shock.

Consider an initial array of identical vortices forming a vortex line, for which the complex-
valued potential is

w(z) =
iΓ
2π

∞∑
n=−∞

ln (z − n z0) (179)

=
iΓ
2π

ln
[
sin
(
πz

z0

)]
,

where z0 is the constant separation between the vortices and Γ is the vortex circulation. The
single-mode Richtmyer-Meshkov instability can be modeled by two periodic arrays with vortices
of opposite strength adjacent to one other. When the initial perturbation is sinusoidal, it is
possible to obtain an expression for Γ = a0/k, which yields

h(t) =
1
k

sinh−1

(
Γ k2

2πt

)
(180)

for the mixing layer width. Thus, the asymptotic velocity scales as

vb(t) =
λ

2πt
, (181)

compared to the asymptotic velocity in the case A = 1 [45] based on the potential model,

vb(t) =
λ

3πt
. (182)

The difference between the two values is due to the added mass in the case A = 0.
Now consider the case of a periodic array of bubbles with two different strengths. The

bubble merger rate was then approximated as

ω

(
λ1

λ2

)
=

1
∆tm

, (183)

where tm is the merger time—the time required for the tip of a small bubble to go from positive
to negative. This result for ω and the resulting asymptotic velocity for the single bubble in
Eq. (181) are used in the bubble merger model, which yields the scaling law for the bubble
amplitude in Eq. (176) with θb = 0.4. Note that the value of θb is the same for A = 0 and
A = 1, further confirming the observation of [7].

2.5.3 The Prasad et al. late-time model

Prasad et al. [103] performed experiments to study the late-time evolution of the single-mode
Richtmyer-Meshkov instability and developed an empirical power-law model based on their
data. At late times, the mixing layer width was assumed to scale according a power-law

h(t) = c tθ (184)

where c is a constant having appropriate units.
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Experiments were performed for a Ma = 1.55 shock refracting at a perturbed air/SF6

interface with different initial amplitudes and wavelengths. The width of the interface was
measured up to 32 initial perturbation wavelengths from the initial location to determine the
power-law that best fits the data. The scatter from different measurements with different
initial amplitudes and wavenumbers is reduced if the data is normalized by the wavenumber
k. A composite least-squares fit to the data yielded

k h(t) = 0.96 (k x)0.33 (185)
= 0.96 (k [u] t)0.33

with x = [u] t. In a separate study, the empirical scaling

h(t) = 2.43 (λx)0.26 (186)
= 2.43 (λ [u] t)0.26

was shown to minimize the scatter of the data and to give the best fit.

2.5.4 The Youngs model for multi-mode initial conditions

Youngs [126] proposed a model for the late-time scaling of the mixing layer width emerging from
the multi-mode Richtmyer-Meshkov instability. Youngs considered random initial amplitudes
a0 chosen from a Gaussian distribution. The standard deviation in the region k < kmax is flat,
where

kmax =
π

∆y
(187)

is the Nyquist wavenumber. Therefore, the relation

σ2 = C

∫ kmax

0
dk (188)

between the standard deviation σ and the integral of the wavenumbers was obtained in two
dimensions. For a single-mode Richtmyer-Meshkov instability, σ2 = a2

0/2. The random initial
kinetic energy is

K0 =
1
3

(ρ1 + ρ2) kmax (σ A [u])2 . (189)

Most of the initial kinetic energy arises from modes with wavenumbers near kmax corresponding
to an initial wavelength λmin. A turbulent layer is assumed to develop when the mixing layer
width becomes of order λmin. This layer was shown to have width evolving as tθ with θ < 1.
The following model was developed to explain this.

Assuming that the velocity field is characterized by a lengthscale L and magnitude V , the
kinetic energy dissipation rate scales as ε ∼ V 3/L. The model equations are

d
dt
(
LV 2

)
= −aV 3 , (190)

dW
dt

= V , (191)

L = bW + c λmin , (192)
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where a, b, and c are model parameters, and W is an integral lengthscale [9]. This lengthscale
is defined in terms of the averaged volume fractions 〈f1〉 and 〈f2〉 according to

W (t) =
∫ ab(t)

as(t)
〈f1〉〈f2〉dx , (193)

where the angle brackets denote a spatial average over the periodic direction(s) (see § 4.1). This
lengthscale provides a measure of the diffusive width of the mixing layer, and is less sensitive
to statistical fluctuations than h. The volume fractions of the two fluids fr are defined in terms
of their mass fractions mr(x, y, t) by [126]

fr(x, y, t) =
mr(x,y,t)

ρr

m1(x,y,t)
ρ1

+ m2(x,y,t)
ρ2

, (194)

such that f1 +f2 = 1. Note that W provides an alternative measure of the mixing layer width.
The initial value of V is given by

V0 =
(

dW
dt

)
t=0

= c
√〈

u2
0

〉
, (195)

c =
1√
2

∫ ∞

0
[1− erf(s)] ds = 0.564 , (196)

√〈
u2

0

〉
=
kmax σ U√

2
|A| . (197)

Therefore, for the initial conditions W (0) = 0 and V (0) = V0, the power-law solution

W (t) =
c

b
λmin

[(
1 +

V0 t b

θ a λmin

)θ
− 1

]
(198)

is obtained, where

θ =
2

3 + a b
. (199)

For the case when no kinetic energy dissipation occurs (corresponding to a = 0), the classical
θ = 2/3 result of Barenblatt [15] is recovered. When kinetic energy dissipation occurs, the
equations predict θ < 2/3.

Youngs compared the predictions of the model (198) with the growth rates obtained from
multi-mode, monotone-integrated large-eddy simulations in two and three dimensions. Ini-
tially, the growth rate of W/λmin was the same in two and three dimensions. At intermediate
times, W/λmin was larger for the three-dimensional simulations, indicating that mixing is more
rapid in three dimensions. At later times, the larger dissipation of kinetic energy in three di-
mensions causes the value of W/λmin to become smaller than that observed in two-dimensional
simulations. For late times, the three-dimensional data was fitted to the model equation with
θ = 0.30.
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2.5.5 The Mikaelian model for a reshocked interface

A linear power-law model for the mixing layer width following reshock was developed by
Mikaelian [87] based on the experimental results of Read [105] and Youngs [124] for the width
of a Rayleigh-Taylor mixing layer

h(t) = 0.14Ag t2 , (200)

where A is the Atwood number and g is the acceleration. Differentiating this expression
twice, taking g = [u]1δ(t) (where [u]1 is the change in velocity resulting from the reshock), and
integrating twice gives (assuming no dependence on initial conditions and neglecting molecular
dissipation effects) the linear-in-time expression

h(t) = 0.28 [u]1A
+
1 t (201)

where A+
1 is the post-reshock Atwood number [87].

2.5.6 The Brouillette-Sturtevant model for a reshocked interface

Brouillette and Sturtevant [19] performed shock tube experiments to measure the effect of a
thick, diffuse interface on the growth of the Richtmyer-Meshkov instability. In these exper-
iments, a thin metal plate initially separated air and SF6 or air and Freon-22 gas. Prior to
launching the shock wave in air, the plate was slowly withdrawn to generate a quasi-sinusoidal
perturbation, leaving a thick, diffuse interface separating the two gases. The shock launched in
air at Mach numbers 1.12–1.66 refracted at the interface and was transmitted into the second
gas. The transmitted shock reflected from the end wall of the shock tube test section and
reshocked the interface.

The growth of the width of a single-mode interface following N +1 impulsive accelerations
was empirically modeled by generalizing the Richtmyer model:

(
dh
dt

)
N

= 2 k
N∑
i=0

[u]iA
+
i a

+
i

ψ+
i

, (202)

where k is the initial perturbation wavenumber, [u]i is the change in the velocity of the interface
corresponding to the ith wave, A+

i and a+
i are the post-shock Atwood number and interface

width, ψ+
i is the post-shock growth reduction factor of Duff et al. [39] (see § 2.1.7), and the

factor of 2 accounts for the mixing layer width (which is twice the mixing layer amplitude
a). As the growth is based on the Richtmyer model for each impulsive acceleration, the
Brouillette-Sturtevant model predicts piecewise-linear-in-time amplitude growth phases. This
model for shocks can also be used for reflected rarefaction waves and, thus, constitutes a
model for the description of the reshock phase, as it accounts for the multiple waves that
successively interact with the interface. The reflected shock refracts at the evolving interface
during reshock to produce an expansion wave. This expansion wave reflects from the end wall
of the shock tube and interacts with the interface, producing a reflected compression wave.
The compression wave reflects from the end wall and interacts again with the interface, and
this process continues. Brouillette and Sturtevant reported good agreement between their
experimental data and the prediction of Eq. (202).
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2.6 The Samtaney-Zabusky-Ray model for baroclinic circulation deposition

Samtaney and Zabusky [113] and Samtaney, Ray and Zabusky [112, 104] derived analytical
scaling laws for the circulation Γ per unit unshocked length deposited on a planar interface by
a shock. The interaction can be classified as fast/slow or slow/fast based on the relative speed
of the incident and transmitted shocks. Fast/slow interactions occur when the refraction
is from a lighter fluid into a heavier fluid, and is associated with a reflected shock wave.
Slow/fast interactions occur when the refraction is from a heavier fluid to a lighter fluid,
and is usually associated with a reflected rarefaction wave. In the present investigation, a
slow/fast interaction is observed for the initial shock refraction from air(acetone) into SF6,
and a fast/slow interaction is observed at reshock.

The circulation deposition model is derived from shock polar analysis (see [68]). In shock
refraction, five regions can be identified when the flow is considered in a frame moving with the
triple-point, as shown in Fig. 5. The parameters of the model are the density ratio r ≡ ρ1/ρ2,
the angle between the interface and the shock α, the shock Mach number Ma, and the adiabatic
exponents of the two gases γr. Note that in Part 1 of the present report [68], β was the angle
between the interface and the direction of shock propagation. As a result β + α = π/2. For
scaling purposes, the adiabatic exponents are taken to be equal.

In the case of a fast/slow interaction in the limit of a strong shock Ma→∞, the circulation
deposition Γ is given by

Γ
Ma

−→
√
γ

sinα


√

1− 2 p∞ sin2 α

(γ + 1) r
−

√√√√1− 2 (1 + µ2 p∞) sin2 α

(γ + 1)
(

1
µ2 + 1+µ2

p∞

)
 cosα

cos (α− δb∞)
, (203)

where µ ≡ (γ − 1)/(γ + 1), p∞ ≡ p5/Ma
2, and δb∞ represents the asymptotic flow turning

angle in region 2 as Ma→∞.
For weak shocks with Ma→ 1,

Γ =
2
√
γ

γ + 1

√
r − 1√
r

sinα
(

1 +
1
Ma

+
2

Ma2

)
(Ma− 1) . (204)

For small density discontinuities across the interface, the circulation is expressed as a series in
r′ = 1− 1/

√
r.

The proposed circulation scaling law is

Γ =
2
√
γ

γ + 1

(
1− 1

√
γ

)
sinα

(
1 +

1
Ma

+
2

Ma2

)
(Ma− 1) . (205)

In the case of a slow/fast interaction and for strong shocks (Ma→∞),

Γ −→ K(r, α, γ)√
1− ξ(Ma)

, (206)

where

K(r, α, γ) =
√
γ + 1 cotα√

2 cos (α− δb)
(207)

×

√1− 1
r

4 γ p(γ−1)/γ sin2 α

(1 + µ2)(γ−1)/γ (γ + 1)2
−

√√√√1− 4 γ p(γ−1)/γ sin2 α

(1 + µ2)(γ−1)/γ
[
(γ + 1)2 − 4 γ sin2 α

]
 ,
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and

ξ(Ma) =
2γ
γ+1

(
Ma2 − 1

)
1 + 2γ

γ+1 (Ma2 − 1)
(208)

is the normalized pressure jump.
In the limit of weak shocks with Ma→ 1,

Γ =
2
√
γ

(
1− 1√

r

)
ξ(Ma) sinα . (209)
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Figure 5: The wave structure of a shock interacting with a contact surface in a reference frame
moving with the point of contact. Note the reflected and the transmitted shocks.





3 Numerical simulations of two-dimensional, single-mode Richtmyer-
Meshkov instability with reshock

In this section the HOPE code, based on the formally high-order accurate weighted essentially
non-oscillatory (WENO) shock-capturing method with a third-order TVD Runge-Kutta time-
evolution scheme, is used to simulate the two-dimensional, single-mode Richtmyer-Meshkov
instability with reshock (see Part 1 of this report [68] for a detailed discussion of the WENO
method and a description of the HOPE code). The WENO method is a modern, high-resolution
reconstruction-evolution method for shock-capturing [66, 73]. As such, the numerical algorithm
based on the discretization of the equations contains implicit truncation errors that can be re-
garded as a nonlinear numerical dissipation. Hence, the present simulations can be interpreted
as a class of monotone integrated large-eddy simulations (MILES) [17, 37, 38], in which the
discrete equations are implicitly filtered and the implicit numerical dissipation is a surrogate
for a dissipation provided by an explicit subgrid-scale model. As the non-dissipative compress-
ible fluid dynamics equations are formally ill-posed [27], this numerical dissipation regularizes
the method and renders it numerically stable for increasingly fine grids. Formally higher-order
reconstructions are less dissipative than lower-order reconstructions. MILES methods typi-
cally dissipate velocity and scalar fluctuations approximately in the same manner numerically.
Thus, the numerical Schmidt number is of O(1), which may provide a reasonable approximate
model for the mixing of gases. However, this approximation is clearly not valid for the case
for fluids with large (molecular) Schmidt numbers. It should be noted that the present work
should not be regarded as an endorsement of the WENO method or of MILES in general;
rather, this work should be regarded as a preliminary investigation of the properties of this
method as applied to the Richtmyer-Meshkov instability with reshock. Ultimately, the WENO
method should be further modified to reduce the numerical dissipation and improve its resolv-
ing power: the hybridization of the WENO method with a central difference scheme, based
on multi-resolution analysis, represents one such approach (see [68]). In addition, molecular
dissipation terms and an explicit subgrid-scale model should be added.

It should be noted that the WENO method was previously applied to the Richtmyer-
Meshkov instability. Kremeyer et al. [65] used a fifth-order WENO method with a third-
order TVD Runge-Kutta time-evolution scheme to perform two-dimensional simulations of
the Richtmyer-Meshkov instability evolution in a shock tube containing gases with different
initial transverse density profiles to investigate shock splitting and, in particular, the role of
shock bowing and vorticity dynamics. Top-hat shaped perturbations, including those shaped
as a notch, were considered instead of a single-mode sinusoidal perturbation considered in
classical investigations of this instability. Zhang et al. [131] used the fifth- and seventh-order
WENO method to simulate the interactions between planar Mach 1.095 and 1.2 shocks with
an SF6 gas cylinder in two dimensions in order to qualitatively and quantitatively study the
dynamical mechanisms of baroclinic vorticity and circulation generation. The results from the
WENO simulations were also compared to the results obtained using the FLASH code. The
interface between the vertical cylinder and surrounding air was modeled by a transition layer
of finite thickness. In addition to flow visualizations at different evolution times, cylinder
lengths, integrated positive and negative vorticity components, normalized circulation, the
distributions of the velocity and density gradient, and cylinder aspect ratio were extracted
from the numerical simulation data as a function of time.

The initial conditions for the present simulations are described in § 3.1. The density
fields obtained from the simulations are compared to experimental PLIF images in § 3.2. The
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mixing layer amplitude is compared to experimental data and to the predictions of models
before and after reshock in § 3.3 and § 3.4, respectively. The time-evolution of the circulation
is considered in § 3.5. Local and global analysis of the mixing properties are considered in § 4.
Comparisons of quantities obtained from simulations using different orders of reconstruction
and grid resolutions are presented later in § 5.

3.1 Numerical simulation parameters

The initial conditions for the present numerical simulations were taken from the experimental
shock tube configuration of Collins and Jacobs [29]. The Mach 1.21 experiment was selected
for additional validation of the HOPE code by comparing the numerical results to the high-
resolution density PLIF images showing the evolution of the instability and to the measured
mixing layer amplitude prior to reshock. The experiments were conducted in a shock tube
using a novel technique to generate a membrane-less perturbed interface. The entire shock
tube had a length of 4.3 m with a square test section having cross-section 8.9 cm × 8.9 cm
and length 75 cm. The shock was generated through the rupture of a membrane and was
launched into a mixture of 75% air and 25% acetone by volume [referred to as air(acetone)] at
standard room temperature and pressure. The shock then refracted at a perturbed interface
separating the air(acetone) mixture and the denser sulfur hexafluoride (SF6) gas, giving rise
to the Richtmyer-Meshkov instability.

The membrane-less interface was generated through a technique described by Jones and
Jacobs [56]. The shock tube contained horizontal slots on two opposite walls. The gases
entered the shock tube from opposite ends, flowed toward each other, and exited through the
two slots, resulting in a fine, diffuse interface. A perturbation was then generated by gently
oscillating the vertical shock tube at a prescribed frequency to establish a standing wave. The
diffuse interface was estimated to be 0.5 cm wide, and the oscillations produced a sinusoidal
perturbation. Planar laser-induced fluorescence (PLIF) was used to visualize the instability
evolution using a mixture of fluorescent acetone with air. The PLIF images were corrected for
the non-uniform laser illumination and Beer’s law attenuation.

A set of experiments was conducted for shocks with Ma = 1.11±0.01 and Ma = 1.21±0.02,
and images were captured up to 11 ms following the initial shock-interface interaction. The
evolution of the instability with spikes of heavier fluid penetrating the lighter fluid and bubbles
of lighter fluid “rising” in the heavier fluid was investigated. The reshock phase observed when
the transmitted shock reflects from the end wall of the test section and interacts with the
evolving interface was also described. Concurrent with the arrival of the reflected shock, a
reflected rarefaction wave also interacted with the interface, as seen in Fig. 4 of [29]. This
initial rarefaction wave was created by the rupture of the membrane used to generate the
initial shock, was subsequently reflected from the end (top) wall of the shock tube, and then
interacted with the evolving interface. This interaction with the reflected rarefaction wave
induced the formation of additional complex structure on the evolving interface.

3.1.1 Initial gas composition

The experiment was performed using a mixture of air and acetone initially separated from
sulfur hexafluoride (SF6) by a diffuse interface. See Table 1 in Part 1 of this report [68] for
a summary of the thermodynamic properties of the air(acetone) and SF6 gases. In order to
specify a single value of the adiabatic exponent to be used in the simulations, a mixture of
50% air(acetone) and 50% SF6 by volume was assumed, yielding γ = 1.24815. The pre-shock
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Atwood number was A− = 0.604. Only the Mach 1.21 experiment is considered in the present
report. The conditions in region 1 ahead of the shock are p1 = 0.925551 bar, T1 = 296 K,
and u1 = 0 cm/s. Cook, Cabot and Greenough [30] also considered this experiment prior to
reshock, and modified their simulation parameters to account for non-ideal effects in the shock
tube, such as an effectively smaller Mach number due to the outflow of gas through the slots.
In the present investigation, no such modifications are used.

3.1.2 Computational domain and interfacial perturbation

To match the shock tube test section dimensions [29], the computational domain has spanwise
dimension Ly = 8.9 cm, with the perturbed initial interface located 3 cm from the edge of the
shock tube. To obtain a test section length of 75 cm, the total length of the computational
domain along the streamwise direction is Lx = 78 cm, as illustrated in the top of Fig. 6. The
adaptive domain capability in the HOPE code [68] allows the initial domain in x to be much
smaller than Lx. In the present simulation, the initial value of Lx is chosen to be approximately
9.3 cm (see Table 3 in § 5 for the values used in the simulations). The computational domain
in the x direction is elongated in increments of 3 cm until a total length of 78 cm is attained.
All of the numerical results presented in this section were obtained using the fifth- and ninth-
order WENO method with a grid resolution ∆x = ∆y corresponding to 256 points per initial
perturbation wavelength. A CFL number of 0.75 was used.

As in the experiment, the sinusoidal interfacial perturbation of Eq. (3) had amplitude
a0 = 0.2 cm and wavelength λ = 5.93333 cm, and the diffuse interface had width δ = 0.5
cm in the numerical simulation. Thus, ka0 = 0.21 � 1, so that the initial growth is in the
linear regime. The initial conditions are illustrated on the bottom of Fig. 6, where the density
Schlieren is plotted. The Schlieren is defined in Eq. (224) in § 3.3.3 and shows the width of
the diffuse interface, and that the shock is captured with two grid points in the direction of
shock propagation.

3.2 Qualitative comparison of instability evolution to experimental PLIF
images

In Fig. 7, corrected PLIF density images from the Collins and Jacobs Mach 1.21 shock tube
experiment are compared to the density fields from the numerical simulations at selected times
before reshock: the experimental images are presented in the middle row, the fields from the
ninth-order WENO simulation are presented in the top row, and the fields from the fifth-order
WENO simulation are presented in the bottom row. The grid resolution of both simulations
was 256 points per initial perturbation wavelength, and both simulations were identical in
every other respect. Very good agreement is observed between the numerical and experimental
images. The density obtained from the ninth-order simulation shows sharper roll-ups than that
from the fifth-order simulation.

Figure 8 continues this comparison of the experimental images to the simulation densities
for selected times following reshock. The ninth-order simulation captures the secondary insta-
bility within the roll-ups at t = 6 ms. The agreement continues to be very good, although an
increasing time discrepancy between the numerical and experimental results develops, with the
simulation images lagging in time behind the PLIF images. This time delay can be explained
by the arrival of the initial rarefaction wave in the experiment, which decelerates the evolving
interface, causing a progressively larger delay in the time of reshock. The rarefaction wave
also causes the formation of small-scale structures on the interface that are amplified during
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Figure 6: Illustration of the shock tube test section (top) and density Schlieren of the initial
condition (bottom) with the shock on the left at x = −2 cm and the diffuse interface on the
right.
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Figure 7: Comparison of corrected PLIF images from the experiment of Collins and Jacobs
(middle row) and the density from the ninth-order WENO simulation (top row) and from the
fifth-order WENO simulation (bottom row), both on the medium resolution grid. The gases are
air(acetone) (blue) and SF6 (red). Note the very good agreement between the experiment and
simulation. The ninth-order simulation captures more of the structure of the roll-up observed
in the experiment at late times than does the fifth-order simulation. The experimental images
are taken from Fig. 6 of Collins and Jacobs [29] (reprinted with the permission of Cambridge
University Press).
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Figure 8: Further comparison of the corrected PLIF images from the experiment of Collins and
Jacobs and the density from the numerical simulations (see Fig. 7). A progressively larger time
delay develops between the experimental and simulation images due to the rarefaction wave in
the experiment, which is not captured in the simulations. The rarefaction wave decelerates the
interface, causing reshock to occur later in time in the experiment compared to the simulation.
The experimental images are taken from Fig. 6 of Collins and Jacobs [29] (reprinted with the
permission of Cambridge University Press).
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reshock. Note that at late time (t = 10 ms), the experimental data shows increased mixing
and fragmentation of large structures. By contrast, the numerical simulations show that large
structures persist. This is due to the excitation of fluctuations in the third spatial dimension
caused by the initial rarefaction wave present in the experiment and subsequently amplified
by reshock, which is not modeled in the numerical simulation. However, the numerical sim-
ulations show that more complex, finer and disordered structures form following reshock. In
addition, the fluid interface observed from the ninth-order simulation shows the appearance
of small-scale roll-ups that are not present in the experimental and fifth-order images. This
is due to molecular dissipation effects present experimentally, and to the relatively large nu-
merical dissipation of the fifth-order simulation that is significantly reduced in the ninth-order
simulation.

The qualitative comparison above shows that it is possible to achieve very good agree-
ment between a two-dimensional, high-resolution shock-capturing simulation with high-order
reconstruction of the fluxes and experimental density PLIF images before reshock when three-
dimensional effects are not very significant. The comparison of densities from the fifth- and
ninth-order simulations demonstrates that higher-order reconstruction better captures sec-
ondary instabilities, the roll-ups appear tighter and sharper, and more fine-scale structures are
present. The fields from the numerical simulations also supplement the experimental images
by displaying the shock focusing observed during reshock. Following reshock, the experiment
and simulations exhibit distinctively different flow structures. This is due to the absence
of the reflected rarefaction wave and the increased importance of three-dimensional effects
including vortex stretching and associated mechanisms that are not accounted for in the two-
dimensional simulations. This results in the formation and persistence of large-scale structures
in the simulations, consistent with the inverse cascade of kinetic energy from small scales to
larger scales observed in two-dimensional experiments and simulations [64, 58] and explains
the much larger amplitude observed in the numerical simulations following reshock compared
to the experimental data. The experiments further show the effects of molecular diffusion and
dissipation mechanisms which are not explicitly modeled by the equations solved numerically.
The numerical simulations contain implicit numerical diffusion and dissipation that may not
be comparable to the molecular values in the physical experiment. The comparison of the
fifth- and ninth-order simulations shows that as the order is increased, finer and more complex
asymmetric structures appear, consistent with a reduced numerical dissipation. These aspects
of the model are further investigated in § 5 where a detailed comparison of quantities computed
using different orders of reconstruction and grid resolutions, corresponding to different levels
of numerical dissipation and diffusion, is performed.

3.3 Evolution of the amplitude prior to reshock

In this section, the perturbation amplitude growth obtained from the fifth-order, medium
resolution numerical simulation is compared to the experimentally-measured amplitude from
Collins and Jacobs [29] and to the predictions of the models presented in § 2. First, the
methods used to determine the mixing layer amplitude, and the bubble and spike amplitudes
from the numerical simulation is presented. Next, the amplitude from the numerical simulation
is compared to the experimental data points. Reshock is further investigated using simulated
density Schlieren images, which provide detailed wave structures and resolution of fine scales.
Next a comparison of the mixing layer amplitude to the predictions of impulsive models, point
vortex models, potential flow models, and nonlinear perturbation series models is presented,
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with the model parameters computed self-consistently from the numerical simulations. Finally,
the predictions of the models with parameters obtained from the experiments are also shown
for comparison.

3.3.1 Numerical determination of the mixing layer width

The mixing layer width is obtained from the mole fraction as follows. In incompressible or
variable-density flows, the mole fraction is typically defined as [31]

X(x, y, t) =
ρ(x, y, t)− ρ2

ρ2 − ρ1
. (210)

However, this definition is not desirable for compressible flows, as it is unclear how ρ1 and
ρ2 should be defined. An alternative definition of the mole fraction based on the molecular
weights and on the mass fraction is therefore needed. In the present numerical simulations,
the mass fraction

m2 =
c2M2

c1M1 + c2M2
(211)

of fluid 2 (SF6) is evolved, where Mr and cr are the molecular weight and molar concentration
of fluid i, respectively. By definition, the mass fraction of fluid 1 is

m1 = 1−m2

=
c1M1

c1M1 + c2M2
. (212)

Then, the mole fraction of fluid 2 can be defined in terms of the molar concentrations by

X =
c2

c1 + c2
. (213)

Using the above definitions, define a mean molecular weight

M =
c1M1 + c2M2

c1 + c2
, (214)

which can also be obtained from the mass fractions mr by solving Eqs. (211) and (212) for c1
and c2 and substituting into Eq. (214) to obtain

M =
M1M2

M1m2 +M2m1
. (215)

Finally, the mole fraction is obtained from the mass fraction m2 and M as

X =
Mm2

M2
. (216)

Equations (215) and (216) yield the desired relation X = X(M1,M2,m2) independent of the
densities, and therefore suitable for compressible flows.

The mixing layer width is obtained by spatially-averaging the mole fraction in the periodic
y-direction

〈X〉 =
1
Ly

∫ Ly

0
X(x, y, t) dy , (217)
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where Ly is the width of the shock tube in the spanwise direction. The spike and bubble
locations, `s(t) and `b(t), are defined as the x position where 〈X〉 ≥ ε and 〈X〉 ≤ 1 − ε,
respectively, with ε = 0.01 in the present investigation (corresponding to a 1–99% criterion in
the mole fraction). Therefore, the total mixing layer width is numerically determined by

h(t) = `b(t)− `s(t) . (218)

Note that this definition of the mixing layer width is quite sensitive to the choice of ε. This
sensitivity will be discussed elsewhere [70].

To obtain the bubble and spike amplitudes separately, a numerical simulation without
an initial perturbation, but otherwise identical to the Richtmyer-Meshkov simulation, was
performed to obtain the position the position of the interface `int. The bubble and spike
amplitudes were then obtained using `int(t) as

ab(t) = `b(t)− `int(t) , (219)
as(t) = `int(t)− `s(t) , (220)

as shown in Fig. (10). As the Atwood number in the present simulation is fairly large, it is
expected that the bubble and spike amplitudes grow asymmetrically. In particular, the spikes
of SF6 penetrate deeper into the air(acetone) gas than the bubbles of air(acetone) “rise” into
SF6. The various kinks observed in the amplitudes indicate the arrival of the reflected shock,
the reflected rarefaction wave, and the reflected compression wave.

For completeness, Fig. 11 exhibits the locations of the interface and shock in the x-t
diagram from the simulation. The locations of the spike `s(t) and of the bubble `b(t) are
indicated by the dashed and solid blue lines, respectively. The interface location `int(t) is
also shown in green. The horizontal distance between the spike and bubble represents the
amplitude a(t) (see Fig. 4 for a schematic of the total amplitude and the bubble and spike
amplitudes). Reshock occurs at t ≈ 6.5 ms when the shock wave refracts at the evolving
interface, generating a transmitted shock in the air(acetone) and a reflected rarefaction wave
in the SF6. The reflected rarefaction wave is not plotted in the x-t diagram. Note that the
transmitted shock moves faster, as indicated by the change in slope, corresponding to a slow-
fast refraction [46]. Following reshock, the interface is compressed (as seen from the kink in
the bubble and spike locations) and moves back into the shock tube away from the end wall of
the test section. Additionally, the amplitude grows more rapidly than prior to reshock. The
increased growth is due to the additional vorticity deposited during reshock on the evolving
interface. The reshock (inversion) process occurs over ≈ 0.2–0.3 ms.

When comparing the numerical simulation data to the predictions of the models presented
in § 2, the following conventions are used. The amplitude growth rate is adjusted to account
for the diffuse interface by including the growth reduction factor ψ (see § 2.1.7) by

da
dt

−→ 1
ψ

da
dt
. (221)

Furthermore, the time and initial velocity are rescaled according to

τ = k v0 t , v0 = k A+ [u] a+
0 , (222)

where a+
0 is the post-shock amplitude and A+ is the post-shock Atwood number. Note that

the post-shock amplitude a+
0 is determined by multiplying the pre-shock amplitude a−0 by the

compression factor
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Experimental data Simulation data
[u] (cm/s) 6060 6630
v0 (cm/s) 628 711
ηcomp 0.8071

Pre-shock Post-shock Pre-shock Post-shock
a0 (cm) 0.183 0.157 0.2 0.1614
A 0.604 0.627 0.6053 0.6274

ushock (cm/s) 35775 18085
ψ 1.17 1.08 1.17 1.08

Table 1: Pre- and post-shock values obtained from the fifth-order simulation on the medium
resolution grid with a comparison to the experimental data.

ηcomp = 1− [u]
ushock

, (223)

where ushock is the velocity of the shock. The values of the pre-shock and post-shock quantities
from the experiment and from the simulation are summarized in Table 1. Note that, when
the model predicts the growth rate of the mixing layer da/dt, the mixing layer amplitude a is
numerically computed by solving an initial value problem using a fourth-order Runge-Kutta
scheme [22].

Table 1 shows the values of the parameters used in the amplitude growth model predictions.
These parameters are also compared to the values reported in the experiments of Collins and
Jacobs (Table 1 in [29]). It is interesting to note that a 10% discrepancy exists between the
interface velocity after the passage of the incident shock [u] reported here and the experimental
values. The value of the interface velocity [u] is not reported in the experiments and can be
inferred from Eq. (11), which Collins and Jacobs use to estimate the initial interface veloc-
ity. The experimental value of the interface velocity was also confirmed by Jacobs [52]. The
discrepancy in the interface velocity is due to the different values of the adiabatic exponent γ.
Physically, the adiabatic exponents for the air(acetone) mixture and for the SF6 gas are dif-
ferent. However, as discussed above, the present numerical simulations have a single adiabatic
exponent for a mixture of 50% air(acetone) and 50% SF6 by volume. This difference in the
adiabatic exponent is reflected in a different shock speed, resulting in different values of [u].
This is an intrinsic limitation of the present numerical simulation. An alternative is to slightly
decrease the shock Mach number to match the interface velocity observed in the experiment
[30]. However, in this case the transmitted shock would differ from the experimental value. As
a result, decreasing the shock Mach number may correctly capture the initial shock speed and
interface velocity, but does not capture the velocity of the transmitted shock. By contrast, the
approach used here matches the experimental amplitude growth results very well, suggesting
that the mixing properties inferred from the simulation are nonetheless in very good agreement
with those in the experiment.

3.3.2 Quantitative comparison to experimental mixing layer amplitude data

In Fig. 9, the mixing layer amplitude from the simulation (blue) is compared to the experimen-
tal amplitude from Collins and Jacobs [29] (red). The mixing layer begins growing immediately
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Figure 9: Comparison of the mixing layer amplitude obtained from the numerical simulation
to the experimental data from Collins and Jacobs in the case of a Mach 1.21 incident shock.
Note the excellent agreement up to reshock. The subsequent large discrepancy is due to the
arrival of the initial rarefaction wave not modeled in the simulation.

following the passage of the initial shock. The initial rapid growth saturates at approximately
4 ms, and then reshock occurs approximately 2.5 ms later. During reshock, the interface is
compressed by approximately 1 cm and then grows rapidly. Comparison of the numerical data
with the experimental data points shows excellent agreement up to reshock. The difference
observed after reshock is due to the arrival of the initial rarefaction wave that is not modeled
in the present simulations, as discussed in § 3.1. The initial rarefaction wave decelerates the
interface and, thus, prolongs the reshock phase to after 8 ms in the experiment. The large
difference observed after reshock emphasizes the importance of the reflected rarefaction wave
on the evolution of the instability. The instability evolution in this experiment is essentially
two-dimensional prior to reshock (by virtue of the manner in which the initial perturbation was
produced), and becomes three-dimensional following reshock, as the shock-interface interaction
excites fluctuations in all spatial directions. Thus, it may be expected that a two-dimensional
numerical simulation can reproduce the experimentally-measured amplitude growth prior to
reshock. However, three-dimensional effects presumably become important following reshock,
and three-dimensional numerical simulations are necessary to correctly capture the mixing
layer width evolution and other quantities. According to Collins and Jacobs [29], the best fit
to their amplitude growth data is given by the Sadot et al. [99] model.

67



5 10 15

2

4

6

8

10

12

14

16

18

time (ms)

(c
m

)

a
s

a
b

0 2 4 6 8
0

1

2

3

4

5

time (ms)

(c
m

)

a
s

a
b

Figure 10: Bubble and spike amplitudes (left) and close-up before reshock (right).
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Figure 11: The x-t diagram showing the position of the interface `int(t) (green line), shock
(red line), and bubble and spike locations `b(t) and `s(t) (solid and dashed blue lines) from
the simulation. The horizontal distance between the spike and bubble represents the total
amplitude a(t).
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3.3.3 Simulated Schlieren images

The detailed wave structure observed in the numerical simulation can be investigated using
simulated density Schlieren images. The definition of the Schlieren function Φ used here is [78]

Φ = exp
[
−α(m2)

|∇ρ|
max |ρ|

]
, (224)

where m2 denotes the mass fraction of SF6, and

α(m2) =

{
20 if m2 > ρ

100 if m2 < ρ
(225)

with ρ = (ρ1 + ρ2)/2. The Schlieren clearly exhibits the density gradients associated with
waves and fine-scale mixing structures.

Figure 12 shows a temporal sequence of simulated density Schlieren images from the fifth-
order numerical simulation during reshock and at late times. The images sharply capture the
diffuse interface, the complex wave structure during reshock, and the small-scale structures at
late times. Note the focusing effect of the waves and the inversion of the bubble transforming
into the spike and vice versa. The images indicate that reshock occurs over a timescale of
approximately 0.2–0.3 ms. The image corresponding to t = 11 ms also shows the arrival
of the reflected rarefaction produced by the reshock after it has reflected from the end wall
of the test section. The rich wave structure displayed by the Schlieren images shows weak,
curved waves that interact and cause focusing. As these waves are expected to be weak due
to the small shock Mach number, it is unclear what role they play in the flow dynamics.
However, it is expected that a uniform, fine grid, high-resolution method is needed to capture
these waves, as more dissipative schemes may dissipate the waves. It would be of interest
to compare similar structures obtained with other numerical methods: although the large-
scale flow dynamics are expected to be similar, these weak, wave structures may be different.
Further note that at late times, the wave structures in the unmixed fluids are no longer present.
Similar complex wave structures following a shock/interface interaction were also observed in
the experimental Schlieren images of Brouillette and Sturtevant [20]. As in the experimental
images, the complex structures in the simulations are the result of the ‘shock scattering’ at the
interface. Note that the additional complex structures present in the experimental images are
due to the shock/boundary layer interaction that are not captured in the current simulations.

3.3.4 Comparison to the predictions of impulsive models

In this section, numerical and experimental data are compared to the predictions of the linear
instability models described in § 2.1. In Fig. 13, the mixing layer amplitude from the simu-
lation is compared to the prediction of the Richtmyer [106] model [see Eq. (11)], the Meyer
and Blewett [83] model [see Eq. (14)], the Fraley [41] model [see Eq. (16)] and the Vanden-
boomgaerde et. al. [122] model [see Eq. (24)]. These models capture the initial linear growth
rate of the mixing layer for normalized times τ ≤ 1. For times τ > 1, nonlinear effects become
significant and the models significantly overestimate the mixing layer amplitude.

For the initial conditions considered here, the Richtmyer model gives the smallest slope
as it uses the post-shock Atwood number and amplitudes. The Meyer-Blewett model uses
the post-shock Atwood number, but averages the pre- and post-shock amplitudes, resulting in
the largest slope. The Vandenboomgaerde model averages the pre- and post-shock amplitudes
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Figure 12: Simulated density Schlieren images of the two-dimensional, single-mode Richtmyer-
Meshkov instability from the fifth-order simulation on the medium grid showing the diffuse
interface, complex wave structure during reshock, and the small-scale structures at late times.
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by the pre- and post-shock Atwood numbers, respectively, and thus, has a slightly smaller
slope than that predicted by the Meyer-Blewett model, but larger than the slope predicted
by the Richtmyer model. The Fraley model, corresponding to the exact initial slope, has a
slope intermediate between those predicted by the Meyer-Blewett and the Vandenboomgaerde
models. This indicates that the impulsive models can successfully capture the linear growth
of the mixing layer, and it is difficult to determine which model agrees best with the data.
However, this is not the case for all initial conditions, as a normalized growth rate analysis
[90] would show. In this analysis, the normalized growth rate is plotted as a function of the
shock strength. The Fraley solution is taken to be the exact solution and the impulsive models
are compared to this solution. For large shock strengths, the impulsive models exhibit large
deviations from the Fraley solution, indicating that they are no longer valid.

Overall, all of the impulsive models correctly capture the initial growth of the mixing layer
for τ < 1. After the initial linear phase, the models do not accurately capture the late-time
evolution of the interface, as nonlinear effects become significant and the amplitude growth
saturates. Consequently, the late-time evolution (τ > 1) is often referred to as the nonlinear
growth phase.

3.3.5 Comparison to the predictions of point vortex models

In Fig. 14 the numerical amplitude data and the experimental data are compared to the
predictions of the vortex model proposed by Jacobs and Sheeley [55] [see Eq. (51)] in the case
ka+

0 = 0 and ka+
0 = 2, and to the model of Likhachev and Jacobs [74] [see Eqs. (57) and

(58)] for εΓ = 1.55 and kεA = 0.085. The first value ka+
0 = 0 corresponds to modeling the

deposition of vorticity on the interface by two large point vortices located at the midpoints
of the sinusoidal perturbation. The second value ka+

0 = 2 accounts for the delay between the
deposition of vorticity and its roll-up into two large vortices of opposite sign. While the model
captures an asymptotic 1/t amplitude growth, both the numerical and experimental data are
in poor agreement with the predictions of the model. The model underestimates the amplitude
for ka+

0 = 0, and overestimates the amplitude for ka+
0 = 2. This is expected, as the model is

based on the assumption that the initial vorticity deposited by the shock immediately coalesces
into cores and does not account for the finite-time formation of these cores. Moreover, this
model is strictly valid only for very small Atwood numbers. Better agreement is observed with
the Likhachev-Jacobs model as expected, as the model is more appropriate for finite Atwood
numbers. However, at intermediate and late times the model underestimates the amplitude
as expected, as a vortex model provides a simplified model for the vorticity dynamics in the
Richtmyer-Meshkov instability evolution.

3.3.6 Comparison to the predictions of potential flow models

In this section the bubble and spike velocities from the numerical simulations are compared
to the predictions for the two-dimensional late-time bubble velocity from the Goncharov and
Sohn potential flow models for variable-density flows.

The bubble and spike velocity are obtained from the bubble and spike amplitudes of Eqs.
(219) and (220) by direct differentiation. Differentiating numerical data introduces mild oscil-
lations and irregularities, as shown in Fig. 15. Figure 15 also shows the asymptotic velocities
from the model of Goncharov in Eq. (130), and the model of Sohn in Eq. (144). First note
that both models give nearly identical predictions for the case considered here and are virtually
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Likhachev-Jacobs point vortex models. When ka0 = 0 the Jacobs-Sheeley model underesti-
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indistinguishable. Despite the mild oscillations, excellent agreement is observed between the
numerical velocities and the predictions from the models.

Abarzhi also presented a model for the late-time amplitude of a bubble in two-dimensional
Richtmyer-Meshkov flow [see Eq. (164)]. The model was found to apply to times much later
than the times considered in the present investigation.

3.3.7 Comparison to the predictions of perturbation models

The numerical amplitude data and the experimental data are compared to the predictions
of the nonlinear models summarized in § 2.3. In Fig. 16, experimental and numerical data
are compared to the perturbation series solutions of Zhang and Sohn [130] [see Eq. (73)],
the perturbation series solution of Vandenboomgaerde et al. [121] [see Eq. (82)] of degree
9 and 11, and the perturbation series solution of Matsuoka-Nishihara-Fukuda model [79] [see
Eqs. (89) and (90)]. The comparison shows that perturbation series successfully capture the
initial growth, but quickly diverge. In particular, note that the result for the eleventh-order
Vandenboomgaerde perturbation series has a smaller radius of convergence than the ninth-order
series. To expand the radius of convergence, the series are extended via Padé approximants.

In Fig. 17, the experimental and numerical data are compared to the predictions of the
nonlinear models extended via Padé approximants. Shown are the P 0

2 Padé approximant of
Zhang and Sohn [see Eq. (74)], the P 4

6 Padé approximant of Vandenboomgaerde [see Eq. (85)],
and the P 0

2 Padé approximant of Matsuoka et al. [see Eqs. (91) and (92)]. In addition, the
prediction of the empirical model of Sadot et al. [99] [see Eq. (167)] is also shown. Note the
excellent agreement between the Zhang-Sohn and Vandenboomgaerde Padé models and the
experimental data in both the linear and nonlinear regime. The models show slight variations
in their respective predictions. In particular, the Padé approximant of Vandenboomgaerde ap-
pears to capture the correct behavior at early times for τ < 1, but overestimates the amplitude
for later times. The Padé approximant of Zhang and Sohn underestimates the amplitude for
τ < 1, but gives the correct behavior for later times. The Padé approximant of Matsuoka et
al. correctly predicts the mixing layer amplitude at early times but underestimates the mixing
layer amplitude at late times.

To determine which of the models gives the amplitude growth in best agreement with the
simulation data, the ratio between the Zhang-Sohn (Padé), Vandenboomgaerde (Padé), Mat-
suoka et al. (Padé), and Sadot models, and the simulation data, [amodel(t)− a0]/[asim(t)− a0],
are presented in Fig. 18. The figure indicates that the Zhang-Sohn Padé model is in best agree-
ment with the numerical simulation data. Collins and Jacobs [29] report that their data is in
best agreement with the Sadot model.

Finally, Fig. 19 shows the comparison of the bubble and spike amplitudes with the pre-
dictions of the Matsuoka et al. model for the bubble and spike amplitudes of Eqs. (91) and
(92), respectively, and the Sadot model for the bubble and spike amplitudes of Eqs. (165) and
(166), respectively. The Matsuoka et al. model overestimates the mixing layer amplitude for
the bubble and spike. The Sadot model shows excellent agreement for the bubble amplitude
from the linear, through the nonlinear regime. By contrast, the Sadot model overestimates the
spike amplitude obtained from the present simulation.
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3.3.8 Comparison of amplitude model predictions using experimentally and nu-
merically determined model parameters

Presented here is a comparison of the predictions of the linear, vortex, and nonlinear models,
when the model parameters are computed using the experimental data by Collins and Jacobs
(see Table 1 and Table 1 in [29]). A comparison is also presented between the predictions of
the nonlinear models when the model parameters are computed using the experimental and
the simulation data. Finally, the ratios of the predictions from the models to the simulation
results are presented.

The top row of Fig. 20 shows a comparison of the predictions from the linear and vortex
models with the model parameters computed using simulation and experimental data. The
linear models computed with the parameters from the experimental data capture the early
growth of the mixing layer. The agreement is comparable to that observed when the models
were computed with the parameters from the simulation data, indicating that the linear models
are not affected by small changes in the model parameters. The plots are not very different from
the predictions of the linear models with the model parameters computed using the simulation
data. The predictions of the vortex models also do not capture the mixing layer growth, but
may capture the late-time growth.

The bottom row of Fig. 20 shows a comparison of the predictions from the nonlinear per-
turbation series models and these models extended via Padé approximants and the simulation
and experimental data. The plots of the nonlinear perturbation series models show that they
capture the early growth very well but have limited range of convergence, as was observed
when the model parameters were computed using the simulation data. The plot of the nonlin-
ear perturbation series extended via Padé approximants and the Sadot model, show increased
regions of agreement. In particular, the Sadot model is now in best agreement with the simu-
lation and experimental data. This is consistent with the conclusion reported by Collins and
Jacobs.

Therefore, when the amplitude model parameters are computed using the experimental
data, the Sadot model gives the best agreement with the experimental and simulation data;
by contrast when the model parameters are computed using simulation data, the Zhang-Sohn
Padé model gives the best agreement. To further understand this difference, a comparison
of the predictions from the Zhang-Sohn Padé, Vandenboomgaerde Padé, and Sadot models
computed using experimental and simulation data, is presented in Fig. 21. It is apparent the
Zhang-Sohn and the Sadot models are the most sensitive to changes in the model parameters.
It is observed that the predictions with model parameters using the simulation data are in
general larger than the predictions with the model parameters using the experimental data.
This is due to the difference in the initial acceleration of the interface v0; more specifically, v0
obtained from the simulation is larger than the corresponding experimental value. By contrast,
the Vandenboomgaerde model does not show significant sensitivity to the variation of the
model parameters. The predictions obtained with the model parameters using experimental
and simulation data are very similar.

The predictions from the nonlinear models and the ratios to the simulation data are pre-
sented in Fig. 22. When the model parameters are computed using the experimental data, the
Sadot model is in best agreement with the data; when the model parameters are computed
using the simulation data, the Zhang-Sohn model is in best agreement with the data. The
figure shows that when the model parameters are computed using the simulation data, the
Sadot model gives ≈ 10% error and the Zhang-Sohn model gives ≈ 1% error. By contrast,
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when the model parameters are computed using the experimental data, the Sadot model gives
≈ 5% error, and the Zhang-Sohn model also gives ≈ 5% error but underpredicts the mixing
layer amplitude.

A further quantification of the differences observed between the predictions of the models
when the parameters are computed using the experimental and simulation data is obtained
using the root-mean-square of the difference between the model predictions and the simulation
data

||x||rms =

√√√√ 1
N

N∑
i=1

|xi|2 . (226)

Let eexp denote the difference between the mixing layer amplitude predicted when the model
parameters are computed using experimental data and the mixing layer amplitude obtained
from the simulation. Similarly, let esim denote the difference between the mixing layer ampli-
tude predicted when the model parameters are computed using simulation data and the mixing
layer amplitude obtained from the simulation. Thus, eexp and esim are vectors representing
the error between the simulations and the model predictions. Taking the root-mean-square
of these vectors for different model predictions provides a quantitative measure of the error
and determines which model is in best overall agreement with the data. The results are pre-
sented in Table 2: the prediction of the Sadot model with the model parameters obtained using
experimental data is in best agreement with the simulation result, and the prediction of the
Zhang-Sohn Padé model with the model parameters obtained using the simulation data is in
best agreement with the simulation result.

The results in this section show the dependence of amplitude growth models on small
changes in the parameters. The experimental parameters from the Collins and Jacobs experi-
ments and the parameters from the present simulation were compared. It was shown that small
variations have a dramatic effect on the nonlinear amplitude growth models. In particular,
it was shown that when experimental data is used, then the prediction of the Sadot model is
in best agreement with the experimental and simulation mixing layer amplitude; by contrast
when the simulation data is used, the prediction of the Zhang-Sohn model is in best agreement.
The root-mean-square of the difference between the simulation results and the model predic-
tions indicate that: (1) when the model parameters are obtained using experimental data, the
root-mean-square is minimized with the Sadot model, and; (2) when the model parameters are
obtained using the simulation data, the Zhang-Sohn model minimizes the root-mean-square
error.

Experimental data Simulation data
||eexp||rms ||esim||rms

Zhang-Sohn Padé 0.00173 0.00055
Vandenboomgaerde Padé 0.00091 0.00130

Matsuoka et al. Padé 0.00293 0.00226
Sadot 0.00038 0.002

Table 2: The root-mean-square of the difference between the simulation data and the Zhang-
Sohn Padé, Vandenboomgaerde Padé, Matsuoka et al. Padé, and Sadot nonlinear models,
when the model parameters are computed using experimental and simulation data.
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3.4 Evolution of the mixing layer amplitude following reshock and compar-
ison to the predictions of reshock models

The mixing layer amplitude following reshock is investigated here. The reshock in the simula-
tion occurs at nearly the same time as in the experiment, as confirmed by both the x-t diagram
and the mixing layer amplitude. The mixing layer amplitude is compared to the prediction of
the Mikaelian [87] reshock model and to that of the Brouillette-Sturtevant [19] reshock model
in Fig. 23. Note that the post-reshock flow is essentially incompressible (see § 4.3).

In order to fit the models, the numerical data was shifted in time and the amplitude at
reshock was subtracted out so that the new origin coincides with the conditions following
reshock. For the Mikaelian model of Eq. (201), the quantities [u]1 = 8000 cm/s and A+

1 =
0.6448 obtained from the simulation are used. For the Brouillette-Sturtevant model of Eq.
(202), the expression (

dh
dt

)
1

= 2 k
(

[u]A+ a+
0

ψ+
+

[u]1A
+
1 a

+
1

ψ+
1

)
(227)

was used, where a+
1 = 1.5 cm, [u]1 = 8000 cm/s, and the value of ψ+

1 is extrapolated as follows.
First recall that ψ is a linear function in δ/λ [see Eq. (41)], where δ is the diffuse mixing layer
width linear in the post-shock perturbation amplitude a+

0 . As a+
1 ≈ 10a+

0 and the value of
ψ+ is known, the constant C in Eq. (41) can be determined as a function of δ/λ. Then,
substituting the new value for a+

1 gives the new value of ψ+
1 .

Note that the simulation data agrees very well with the prediction of the Mikaelian model at
early times (t > 2 ms) following reshock. Vetter and Sturtevant [123] also concluded that their
experimental results were in excellent agreement with the prediction of the Mikaelian model.
For later times, the Mikaelian model overestimates the growth of the mixing layer, while
the Brouillette-Sturtevant model underestimates the growth at all times following reshock.
Using the values above yields (dh/dt)1 = 1444.35 cm/s and (dh/dt)1 = 1029.05 cm/s for the
Mikaelian and Brouillette-Sturtevant models, respectively.

The comparison of the mixing layer width from the numerical simulation with the pre-
dictions of the phenomenological Mikaelian and Brouillette-Sturtevant models indicates that
the growth of the mixing layer is apparently well approximated by a linear-in-time model for
very short times (< 2 ms) following reshock. The variations in the growth rate observed in
the simulation are due to further wave interactions with the evolving interface, which are not
accounted for in the application of these models.

3.5 Baroclinic circulation deposition on the interface

The circulation deposited on the interface by the shock quantifies the driving mechanism for the
evolution of the Richtmyer-Meshkov instability. Scaling laws for circulation deposition are of
importance to vortex methods and to the analytical models developed by Samtaney, Ray, and
Zabusky [113, 112, 104], as reviewed in § 2.6. Presented in this section is an investigation of the
circulation deposition computed using the fifth-order, medium resolution numerical simulation.

First, consider the integral of the vorticity in the streamwise x-direction

ω(y, t) ≡
∫
ω(x, y, t) dx (228)

shown in Fig. 24, which indicates that the deposition of circulation on the interface has a
sinusoidal distribution, as predicted by the Samtaney-Zabusky model [113].
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The total circulation on the interface is given by the integral of ω(y) over the transverse
periodic direction y,

Γ(t) =
∫
ω(y, t) dy . (229)

The circulation Γ(t) can also be computed using the contour integral

Γ(t) =
∮
C

u·dr , (230)

where C is the oriented closed contour, and dr is the unit tangent to C.
For two-dimensional simulations, the vorticity field and the outward oriented area element

are parallel. Therefore, the circulation can be computed on a uniform rectangular grid with
spacings ∆x and ∆y as [113]

Γ(t) =
∑
i,j

ω(xi, yj , t) ∆x∆y , (231)

where the double summation is over all of the grid points in the computational domain.
The total circulation Γ(t) computed over a period is shown in Fig. 25. The circulation is

very close to zero up to t = 11 ms, consistent with the sinusoidal deposition shown in Fig. 24
and the preservation of symmetry as the instability develops. The large, positive values for
t > 11 ms are due to the asymmetry of the complex topological structures observed at late
times following reshock. In the region where Γ = 0 define the positive and negative circulations
computed as the vorticity summed over the two halves of the period U+ = {λ/2 < y(j) < λ}
and U− = {y(j) < λ}:

Γ+(t) =
∑
i

∑
j∈U+

ω(xi, yj , t) ∆x∆y , (232)

Γ−(t) =
∑
i

∑
j∈U−

ω(xi, yj , t) ∆x∆y . (233)

The positive and negative circulations are shown in Fig. 25. Note that reshock deposits
vorticity of opposite sign on the interface as the refraction is from a heavier gas into a lighter
gas. Consequently, the positive circulation changes sign and becomes negative after reshock
and the negative circulation becomes positive. The large values for the negative and positive
circulation following reshock are due to the complex structure of the interface, resulting in a
larger amount of vorticity deposited by the shock.

Now consider the circulation prior to reshock shown in Fig. 26. First note that the
positive and the negative circulation are plotted together. The two curves overlap prior to
reshock, indicating the symmetry as the instability evolves. Note that the circulation increases
slightly following reshock. This result is consistent with the recent findings of Peng, Zabusky
and Zhang [101] showing the amplification of the circulation due to the secondary baroclinic
vorticity deposition. The secondary baroclinic circulation can also be used to explain the
more pronounced increase in the circulation following reshock, but prior to the arrival of the
reflected rarefaction wave. Following the arrival of the reflected rarefaction wave, the negative
and positive circulations show an increasing discrepancy due to symmetry breaking. Vortical
structures become disordered and may cross from the positive region U+ into the negative
region U−, inducing the development of asymmetry.

77



The results above indicate that the deposition of circulation on the interface can be char-
acterized as follows. Immediately following the first interaction with the shock, the circulation
has a sinusoidal distribution on the interface, so that integrating over an entire period yields
zero total circulation. The positive and negative components of the circulation show an in-
crease following the shock interaction, consistent with secondary baroclinic vorticity deposition.
This secondary instability is responsible for the complex structures observed in the roll-ups
of the Richtmyer-Meshkov instability and for additional vorticity deposition on the interface.
Reshock causes the deposition of additional vorticity of opposite sign, which is further amplified
by the secondary baroclinic vorticity deposition. Complex structures form following the inter-
action with the reflected rarefaction wave and symmetry breaks, resulting in large discrepancies
between the positive and negative vorticity: this yields a non-zero total circulation.
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Figure 15: Bubble and spike velocities from the simulation compared to the asymptotic bubble
velocity predicted by the Goncharov and Sohn models.
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Figure 16: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and the experimental data, together with the predictions of the Padé models of Zhang and
Sohn, Vandenboomgaerde, and Matsuoka et al. The series captures the initial growth of the
mixing layer into the nonlinear regime, but diverges rapidly. The Vandenboomgaerde eleventh-
order series diverges sooner than the ninth-order series.
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Figure 17: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and the experimental data, together with the predictions of the perturbation series models of
Zhang and Sohn, Vandenboomgaerde, and Matsuoka et al. extended via Padé approximants.
The prediction of the empirical model of Sadot is also shown. Note the excellent agreement
between the models and the experimental amplitude.
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Figure 19: Comparison of bubble and spike amplitudes with the predictions of the Matsuoka
et al. (Padé) and Sadot models.
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Figure 20: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and the experimental data, together with the predictions of linear, vortex, and nonlinear per-
turbation and Padé models, when the model parameters are computed using the experimental
data. Time is rescaled such that τ = kv0t, where v0 = kA+[u]a+

0 .



0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

τ

k(
a(

t)−
a 0)

Experimental Data
Simulation Data
Zhang−Sohn (Experimental)
Zhang−Sohn (Simulation)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

τ

k(
a(

t)−
a 0)

Experimental Data
Simulation Data
Vandenboomgaerde (Experimental)
Vandenboomgaerde (Simulation)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

τ

k(
a(

t)−
a 0)

Experimental Data
Simulation Data
Matsuoka (Experimental)
Matsuoka (Simulation)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

τ

k(
a(

t)−
a 0)

Experimental Data
Simulation Data
Sadot (Experimental)
Sadot (Simulation)

Figure 21: Comparison of the predictions of the nonlinear Zhang-Sohn Padé, Vandenboom-
gaerde Padé, Matsuoka et al. Padé, and Sadot models with model parameters computed using
the experimental and simulation data as presented in Table 1
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Figure 22: Comparison of the predictions of nonlinear models with model parameters computed
using the experimental and simulation data as presented in Table 1. The ratio of the model
predictions to the simulation data shows that the Sadot model agrees best with the simulation
and experimental data when experimental parameters are used; by contrast, when simulation
parameters are used, the Zhang-Sohn model is in best agreement with the simulation and
experimental data.
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Figure 23: The mixing layer width h(t) of a reshocked interface and the predictions of the
Mikaelian and Brouillette-Sturtevant models. The simulation data was shifted in time and the
amplitude at reshock was subtracted out so that the new origin coincides with the conditions
at reshock.
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Figure 25: The time-evolution of the positive and negative components of the circulation (left)
and the total circulation deposited on the interface (right).
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4 Local and global analysis of mixing in two-dimensional, single-
mode Richtmyer-Meshkov instability with reshock

Presented in this section is a comprehensive investigation of mixing induced by the two-
dimensional Richtmyer-Meshkov instability with reshock. The analysis of mixing considers
both local and global quantities. Local analysis refers to an investigation of a quantity at a
given time: two types of quantities are considered—mixing profiles and spectra. Mixing pro-
files are quantities averaged across the statistically-homogeneous (periodic) y-direction (so that
they are only a function of the streamwise coordinate x and time) characterizing the extent and
efficiency of mixing. Spectra of quantities within the mixing layer are obtained as a function
of the one-dimensional wavenumber k by Fourier-transforming along the periodic (spanwise)
direction. Global analysis refers to an investigation of a wavenumber-integrated spectrum (a
statistic) or a volume-integrated quantity (a mixing fraction or primitive field) as a function of
time. Very little previous investigation of these quantities has been performed in Richtmyer-
Meshkov instability-induced mixing [126, 94]. However, Youngs [125, 126], Cook and Dimo-
takis [31], Ristorcelli and Clark [109], and Dimonte et al. [32] have numerically investigated
the evolution of mixing fractions and energy spectra for Rayleigh-Taylor instability-induced
mixing. The quantities considered in the present analysis can be easily generalized to the case
of three-dimensional flows, and will be considered in Part 4 of this report [70].

The analysis described above is applied to the simulation of the Richtmyer-Meshkov in-
stability initialized using the Mach 1.21 Collins and Jacobs shock tube experiment, and using
fifth-order WENO reconstruction with a grid resolution of 256 points per initial perturbation
wavelength, as discussed in § 3. To investigate the late-time decay of the mixing following
reshock, the boundary condition at the end of the simulated test section is modified to outflow
so that reflected waves following reshock exit the computational domain and no longer inter-
act with the evolving mixing layer (corresponding to the decay regime, as distinct from the
quasi-decay regime, in which reflected waves are permitted to interact with the mixing layer).
Particular emphasis is given to comparing mixing and spectral quantities before and after
reshock. The objective of this comprehensive investigation is to quantitatively characterize the
mixing induced by the single-mode Richtmyer-Meshkov instability before and after reshock in
two dimensions, and to appreciate the manifestations of the reflected waves in the evolution of
the reshocked interface.

Note that in the present investigation, the initial condition is deterministic. Furthermore,
only one realization of the flow is simulated. Thus, the profiles, spectra, and statistics com-
puted in subsequent sections exhibit variations that would otherwise be reduced if an ensemble
average of realizations with a stochastic initial condition was used.

4.1 Time-evolution of mole, volume, and mixing fraction profiles

Several averages must be introduced to define spanwise-averaged quantities across the mixing
layer (streamwise profiles), as well as fluctuations required to define energy spectra. Let angle
brackets denote an instantaneous average of a function φ(x, y, t) over the periodic (spanwise)
direction y with length Ly:

〈φ〉(x, t) =
1
Ly

∫ Ly

0
φ(x, y, t) dy , (234)
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which can be interpreted as an instantaneous Reynolds average in the present investigation
(see [126] for the three-dimensional analog of this average). The Reynolds fluctuating field is

φ(x, y, t)′ = φ(x, y, t)− 〈φ〉(x, t) . (235)

The instantaneous Favre average of φ is

φ̃(x, t) =
〈ρ φ〉
〈ρ〉

, (236)

which is used for the statistical analysis of variable-density and compressible flows. The Favre
fluctuating field is

φ(x, y, t)′′ = φ(x, y, t)− φ̃(x, t) . (237)

Thus, in the present analysis of two-dimensional data, the Reynolds- and Favre-averaged fields
are functions only of the streamwise coordinate x and time, while the fluctuating fields are
functions of both the streamwise and spanwise coordinates and time.

Note that throughout this section the profiles of quantities across the mixing layer are
presented with the streamwise coordinate rescaled by the mixing layer width h(t) and recen-
tered by the position of the midpoint between the bubble and spike front locations xmid, i.e.,
(x− xmid)/h(t). This rescaling adjusts the profiles so that the rescaled edges of the mixing
layer are identical at different times, and results in a loss of information regarding the width
of the layer, but facilitates the investigation of the mechanisms of the mixing process and the
distribution of mixed mass within the layer.

4.1.1 Evolution of the mole fraction profile 〈X〉

Quantities previously introduced in the context of the analysis of Rayleigh-Taylor mixing
by Youngs [126] and Cook and Dimotakis [31] are considered and adapted to the Richtmyer-
Meshkov instability here. First consider the mole fraction X(x, y, t) averaged over the spanwise
direction y, 〈X〉(x, t). Consider two fluids with constant densities ρ1 and ρ2 > ρ1. The mole
fraction X defined in Eq. (216) varies from X = 0 in the first fluid to X = 1 in the second
fluid, so that the mole fraction profile 〈X〉(x, t) gives the relative distribution of mass of the
two fluids within the mixing layer. If the two fluids are uniformly-distributed over the entire
volume under consideration, as expected in complete homogeneous mixing, then 〈X〉 = 0.5.

To facilitate the comparison of the mole fraction profile at different times, the streamwise
coordinate is recentered by the location of the midpoint between the bubble and spike position.
The left column of Fig. 27 shows the recentered mole fraction profile at time intervals of 1 ms
from t = 0 to t = 17 ms. The mole fraction profile increases from 〈X〉 = 0 in the air(acetone)
mixture to 〈X〉 = 1 in SF6. The increasing width of the profile shows the spatial spreading of
the mixing layer in time. The profiles further display the varying distribution of mass inside
the mixing layer prior to reshock. Initially, at t = 0 ms the profile is monotonically-increasing
as the initial interface is slightly diffused. After the initial passage of the shock, the profile
increases in width and becomes non-monotonic with a peak developing within the air(acetone)
gas mixture, and moving to the left and increasing in magnitude with time. This is due to spikes
of SF6 penetrating into the air(acetone), forming the characteristic roll-ups. These roll-ups
are a consequence of the entrainment of additional SF6 within the air(acetone) mixture. The
bubbles of air(acetone) “rise” in the SF6, causing an overall decrease in 〈X〉 in the SF6. Reshock
compresses the averaged mole fraction, as shown between t = 6 and t = 7 ms. The width of the
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Figure 27: Time-evolution of the mole fraction profile 〈X〉 with the x-axis recentered (left
column), and with the x-axis recentered and rescaled by the total mixing layer width h (right
column).
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mixed layer increases rapidly following reshock. Reshock also generates additional structure,
which is reflected in the distribution of 〈X〉 (now displaying several localized peaks). For later
times, the growth of the mixing layer slows and the localized peaks decrease in magnitude, and
〈X〉 begins to approach 0.5, indicating a well-mixed distribution of mass within the layer.

The right column of Fig. 27 shows the mole fraction profile 〈X〉 with the recentered
streamwise coordinate rescaled by the mixing layer width h. The figures at early times indicate
the transfer of mass between the bubbles and spikes, causing the non-monotonic profiles noted
above. Prior to reshock, the profile evolves smoothly in space and time. Reshock causes a
fundamental change in the distribution of mass with additional structures forming, as reflected
in the more complex structure of the profile than at earlier times. For late times, the profiles
begin to collapse and exhibit increased oscillations resulting from the break-up of structures.

The results from this investigation indicate that the mole fraction profile 〈X〉 is appropriate
to measure the evolving redistribution of mass within the mixing layer caused by the creation of
bubble- and spike-like structures. In particular, prior to reshock the main mechanisms affecting
the mole fraction are the creation of a single, dominant bubble and spike; following reshock,
the main mechanism is the excitation of many smaller bubbles and spikes contributing to
the highly irregular, topologically-complex structure observed. These additional bubbles and
spikes are responsible for elongating the mixing layer, resulting in a distribution of mass that
is nearly uniformly increasing across the layer from the air(acetone) to the SF6 side.

4.1.2 Evolution of the profiles of the averaged chemical product from a fast kinetic
reaction 〈Xp〉, Xp(〈X〉) and of the mixing fraction ξ

A quantitative measure of mixing can be defined as follows. Suppose that the two fluids
undergo a fast kinetic reaction, so that the amount of product produced (see Koochesfahani
and Dimotakis [61] and Cook and Dimotakis [31]) is

Xp(x, y, t) =

{
X
Xs

for X ≤ Xs

1−X
1−Xs

for X > Xs

, (238)

where Xs is a parameter chosen to be Xs = 1/2 here (indicating that the product is composed
of one mole of each reactant), and is limited by the amount of reactant (either the heavy or
the light fluid). The profile of the averaged product mole fraction 〈Xp〉(x, t) ∈ [0, 1] provides
information on how well mixed the two reactants are. The maximum amount of reactant mole
is Xp(〈X〉) ≥ 〈Xp〉 if the two reactants were homogeneously mixed in the spanwise direction.
The ratio

ξ(x, t) =
〈Xp〉

Xp(〈X〉)
, (239)

which is between zero and unity, also locally characterizes how well mixed the two fluids are.
If the fluids were completely and homogeneously mixed, 〈Xp〉 = Xp(〈X〉), so that ξ(x, t) = 1.

The left column of Fig. 28 shows the time-evolution of the averaged product mole profile
〈Xp〉. The initial diffusion layer is well-mixed, with a rapid decrease in 〈Xp〉 between t = 0 and
1 ms, as expected; 〈Xp〉 broadens and rapidly develops sharp cusps at the edges of the mixing
layer x/h(t) ≈ ±0.5 as the spikes of heavy fluid penetrate into the lighter fluid and bubbles of
the light fluid “rise” in the lighter fluid (and the two fluids become less mixed). At these very
early times in the instability evolution, 〈Xp〉 is nearly-symmetric, with values ranging from
≈ 0.05–0.06 over most of the layer. A pronounced asymmetry develops for t > 2 ms: as the
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Figure 28: Time-evolution of the product mole fraction profile 〈Xp〉 (left column) and the prod-
uct mole fraction if the fluids were homogeneously mixed Xp (〈X〉) with the x-axis recentered
and rescaled by the total mixing layer width h (right column).
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roll-ups form, a further peak within the air(acetone) mixture develops, corresponding to well-
mixed fluid in the cores. Reshock significantly increases the product mole 〈Xp〉, as additional
fine-scale structures form; 〈Xp〉 exhibits significant oscillations following reshock, which persist
to late times. At late times the fluids tend to be more mixed and larger peaks develop in the
SF6, corresponding to the arrival of multiple reflected waves that produce increased mixing
at one end of the mixing layer. The gases tend to be less mixed in the region closer to the
air(acetone) than in the region closer to the SF6.

The right column of Fig. 28 shows the mole fraction of the chemical product if the two
fluids were completely mixed, Xp(〈X〉). This quantity measures the fraction of the maximum
amount of product Xp observed if the two reactants were completely mixed 〈X〉, and indicates
the maximum possible value of 〈Xp〉. At early times, Xp(〈X〉) is peaked at x/h = 0. Like
〈Xp〉, Xp(〈X〉) exhibits a complex spatial structure, with large oscillations following reshock.

The left column of Fig. 30 shows the ratio ξ defined in Eq. (239). This quantity constitutes
a local mixing fraction characterizing how well the two fluids are mixed in the layer. For t > 0,
ξ decreases rapidly, attaining its largest values near the edges of the mixing layer. At early
times t < 2 ms, ξ ≈ 0.1 across most of the layer. For t > 2 ms, ξ develops peaks on the
air(acetone) side. Reshock amplifies ξ and induces strong oscillations across the mixing layer.
At times t > 12 ms, ξ is strongly peaked on the air(acetone) side.

The results from this investigation suggest that 〈Xp〉 and Xp (〈X〉) are useful for under-
standing how well the mass is mixed across the layer. Large peaks are observed at early times
due to the diffusive initial conditions; as the spike and bubble evolve through the linear phase,
the two peaks separate and as the roll-ups form, additional peaks are observed corresponding
to well-mixed fluid within the roll-ups; following reshock, several smaller roll-ups form, con-
tributing to a larger number of peaks indicating large regions with localized well-mixed air
and SF6; at late times the formation of large-scale structures contribute to the appearance of
large, wide peaks with smaller peaks of well-mixed fluid. This late-time behavior is consis-
tent with the inverse cascade of small-scale velocity fluctuations to larger scales observed in
two-dimensional turbulent flows.

4.1.3 Evolution of the profiles of the volume fractions 〈f1〉, 〈f2〉 and of the mixing
fractions ξ and θ

The volume fractions (194) can be averaged over the spanwise direction to give the volume
fraction profiles 〈fr〉(x, t). Figure 29 shows the volume fraction profiles 〈f1〉 and 〈f2〉, where
the subscripts 1 and 2 correspond to the air(acetone) and SF6, respectively. Note that the
spatio-temporal evolution of 〈f2〉 is very similar to that of 〈X〉.

The volume fractions provide information on the mixing layer dynamics similar to that
obtained from the mass fraction 〈X〉 for the current flow configuration. In configurations in-
volving gases with much larger Atwood numbers than considered here, the volume and mass
fractions provide somewhat different information. These quantities can be compared to exper-
imental data or numerical simulation data depending on which data is more directly available.

The local molecular mixing fraction θ(x, t) is obtained from the averaged volume fractions
and the average of their product [125, 126]

θ(x, t) =
〈f1f2〉
〈f1〉〈f2〉

. (240)

The mixing fractions ξ and θ are shown in the left and right columns of Fig. 30, respec-
tively. Note the similarity between θ and ξ due to the fact that both quantities are a measure
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Figure 29: Time-evolution of the volume fractions 〈f1〉 (left column) and 〈f2〉 (right column)
with the x-axis recentered and rescaled by the total mixing layer width h.
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Figure 30: Time-evolution of the molecular mixing fractions ξ (left column) and θ (right
column) with the x-axis recentered and rescaled by the total mixing layer width h.
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of mixing, indicating that both mechanisms—the fast kinetic reaction and the diffusion pro-
cess characterized by θ—provide a very similar qualitative description of mixing. Note that
this ‘molecular mixing’ is induced by stirring and by the numerical diffusion present in the
algorithm, rather than by molecular processes.

4.2 Time-evolution of mixing fractions and of volume-averaged quantities

The time-evolution of global quantities such as the production quantities Pt and Pm, and the
mixing fractions Ξ and Θ are presented here. The volume-averaged streamwise and spanwise
velocity components, and pressure are also investigated.

4.2.1 Evolution of the lengthscale W

The lengthscaleW is shown in the top right of Fig. 31, and qualitatively resembles the evolution
of the mixing layer width h shown in the top left of Fig. 31. Note that these lengthscales do
not appear to exhibit a simple power-law growth at late times. The value of W is obtained
by integrating the volume fractions, and is therefore less sensitive to the cutoff values used
to obtain h. In fact, when small features form near the edges of the mixing layer following
reshock, the overall mass fraction 〈X〉 may be just above or below the cutoff used to define
h. As a result, h may oscillate whereas W remains smooth. The information provided by
W is qualitatively similar to that provided by h, and is not considered further in the present
investigation.

4.2.2 Evolution of the mixing fractions Pt, Pm, Θ, and Ξ

From the product mole fraction Xp, the total chemical product Pt is obtained by integrating
〈Xp〉 over the mixing layer width,

Pt(t) =
∫ ab(t)

as(t)
〈Xp〉dx . (241)

The total chemical product Pt can be compared to the maximum amount of chemical product,

Pm(t) =
∫ ab(t)

as(t)
Xp(〈X〉) dx (242)

≥ Pt(t) ,

measuring the product obtained if both reactants were homogeneously mixed.
The time-evolution of Pt and Pm is shown in the middle row of Fig. 31. Before reshock,

Pt increases, indicating an increase in mixing, while Pm decreases. The decrease in Pm in-
dicates that the maximum molar product decreases due to the presence of the bubble which
creates large, unmixed structures within the mixing layer. During reshock, the mixing layer
is compressed, inducing additional mixing as measured by Pt. Following reshock, Pt increases
rapidly, indicating significantly increased mixing. As the mixing progresses, large unmixed
structures form, causing the decrease in Pm.

The ratio of the total and maximum chemical product gives the mixing fraction [31]

Ξ(t) =
Pt(t)
Pm(t)

, (243)
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with increasing values of Ξ signifying more complete mixing. From the local molecular mixing
fraction θ, another global molecular mixing fraction can be defined as [125]

Θ(t) =

∫ ab(t)
as(t)

〈f1 f2〉dx∫ ab(t)
as(t)

〈f1〉〈f2〉dx
, (244)

with increasing values of Θ also corresponding to more complete mixing.
The time-evolution of the mixing fractions Θ and Ξ is also shown in the middle row of Fig.

31. As was observed for ξ and θ in Fig. 30, the mixing fractions Ξ and Θ give qualitatively
similar information. As the fluids mix following the initial shock passage, the mixing fractions
increase. A spike is observed during reshock as the mixing layer is compressed and the overall
mixing is increased. Following reshock, the mixing fractions increase at a faster rate than
before reshock, indicating that reshock increases mixing.

The results above suggest that integrated mixing fractions Θ and Ξ provide a physical
interpretation of the mixing, produced in this case by the numerical algorithm, rather than by
the molecular effects present in the physical experiment. The results indicate that mixing is
affected in the following way by reshock. Immediately after reshock, the layer is compressed
causing a well-mixed region to form, as shown by the formation of a sharply-peaked value in the
mixing fractions. This well-mixed region is characterized by the rapid production of small-scale
features by the reshock process, as shown earlier. Subsequently, the mixing layer undergoes a
rapid growth as the inversion occurs, causing the overall mixing to decrease rapidly over a time
interval of approximately two milliseconds. Following this decay, the formation of complex flow
features with roll-ups causes the mixing to again increase. As shown here, the combined use of
all of the mixing profiles and mixing fractions is needed to obtain a quantitative understanding
of the mixing processes caused by reshock.

4.2.3 Evolution of the volume-averaged velocity components and pressure

The time-evolution of the volume-averaged streamwise and spanwise velocities, and pressure
are presented here. In two dimensions, define the volume average of φ(x, y, t) by

〈φ〉xy (t) =
1

h(t)Ly

∫ ab(t)

as(t)

∫ Ly

0
φ(x, y, t) dy dx . (245)

The volume-averaged streamwise and spanwise velocity components 〈u〉xy and 〈v〉xy, respec-
tively, are shown in the bottom row of Fig. 31 as a function of time. As expected, 〈v〉xy = 0 for
all time. Note that 〈u〉xy is the velocity of the interface, which rapidly decreases at reshock;
〈u〉xy changes sign at reshock and remains nearly constant over t ≈ 6.5–10.5 ms, indicating an
inversion of the direction of the mean motion of the mixing layer, as well as the effect of the
reflected rarefaction wave. Note that 〈u〉xy → 0 at late times, as the reflected waves following
reshock decelerate the interface and eventually bring it to rest.

The volume-averaged pressure 〈p〉xy is also shown in the bottom row of Fig. 31 as a function
of time. The average pressure reflects the effect of the reshock (which significantly increases
the pressure during compression) and of the rarefaction wave (which decreases the pressure).
A nearly constant value of 〈p〉xy is maintained over t ≈ 6.5–10.5 ms. The temporal evolution
of both 〈u〉xy and 〈p〉xy clearly show the interaction of the reflected waves with the mixing
layer. As expected, the volume-averaged spanwise velocity 〈v〉xy is zero with some very small
fluctuations at the time of reshock.
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Figure 31: Time-evolution of the mixing layer width as measured by h(t) and W (t) in the top
row. The time-evolution of the mixing fractions Pt, Pm, Θ, and Ξ are shown in the middle
row. The time-evolution of the volume-averaged streamwise and spanwise velocities 〈u〉xy and
〈v〉xy, and the volume-averaged pressure 〈p〉xy are shown in the bottom row.
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The results above provide a description of the mean flow and confirm the expected behavior
from the wave structure observed here. In particular, the mean pressure and mean streamwise
velocity quantify the effects of reflected waves on the averaged dynamics of the mixing layer.

4.3 Time-evolution of the fluctuating kinetic energy, fluctuating enstrophy,
density variance, and pressure variance spectra

The time-evolution of the spectra corresponding to the fluctuating kinetic energy, fluctuating
enstrophy, density variance, and pressure variance are investigated here. An examination of
these spectra provides information on the growth of different scales of the flow, as well as
on the energy transfer process among scales. Summarized here is the general procedure used
in the present investigation to determine the spectrum of a quantity φ(x, y, t) defined in the
mixing layer x ∈ [as, ab]. Typically, φ is a field with Reynolds fluctuation φ′ defined in Eq.
(235) or Favre fluctuation φ′′ defined in Eq. (237). The spectral analysis used here adapts the
formulations of Lesieur et al. [72] and Mügler and Gauthier [94, 95] applied to inhomogeneous
flows with a direction of statistical-homogeneity (periodicity). The fundamental procedures of
Fourier analysis are reviewed elsewhere [43, 23, 102].

First, the Fourier transform of φ(x, y, t) is taken in the periodic spanwise direction to obtain

φ̂(k, x, t) =
1
2π

∫ ∞

−∞
φ(x, y, t) exp (−ik y) dy . (246)

Numerically, the discrete Fourier transform of φ(x, y, t) is taken in the periodic y-direction to
obtain the one-dimensional spectrum,

φ̂(kn, x, t) =
1
Ny

Ny−1∑
n=0

φn(x, t) exp (−ikn ∆y) , (247)

where n = 0, 1, ..., Ny, and Ny is the number of grid points in the y-direction with uniform grid
spacing ∆y, and

kn =
2πn
Ny ∆y

(248)

is the discrete wavenumber (n.b., in the subsequent analysis, the units of k are cm−1). Such a
spectrum is appropriate for a two-dimensional flow having one direction of statistical-homogeneity,
in which periodic boundary conditions are assumed.

The energy associated with each Fourier mode k is obtained by averaging over the extent
of the mixing layer to obtain the one-dimensional energy spectrum of the quantities φ and ψ,

Eφψ(k, t) =
1

2h(t)

∫ ab(t)

as(t)

[
φ̂(k, x, t) ψ̂(k, x, t)∗ + φ̂(k, x, t)∗ ψ̂(k, x, t)

]
dx , (249)

where h is given by Eq. (218) and ∗ indicates complex conjugation. Numerically, this inte-
gration over the mixing layer width is performed using the trapezoidal rule. In the results
presented below, all modes above the Nyquist wavenumber (187) are neglected [102]. The
spectrum Eφψ(k, t) provides information on the energy content of all of the scales present in
the statistical correlation between φ and ψ as a function of time. This constitutes a local
analysis, as modal information is obtained within the mixing layer as a function of scale. The
characteristic scale of a structure with wavenumber k is ` ∼ 1/k.
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The spatial profiles of the one-dimensional spectral density

Eφψ(kn, x, t) =
φ̂(kn, x, t) ψ̂(kn, x, t)∗ + φ̂(kn, x, t)∗ ψ̂(kn, x, t)

2
(250)

can also be considered, in addition to the spatially-integrated spectra (249). The usual energy
spectrum corresponds to ψ = φ:

Eφφ(kn, x, t) =
∣∣∣φ̂(kn, x, t)

∣∣∣2 (251)

with

Eφφ(kn, t) =
1
h(t)

∫ ab(t)

as(t)

∣∣∣φ̂(kn, x, t)
∣∣∣2 dx . (252)

Figures 32 and 33 show the time-evolution of the streamwise and spanwise fluctuating
kinetic energy spectra per unit volume Eu′′u′′(k, t) and Ev′′v′′(k, t), respectively, and the total
fluctuating kinetic energy spectrum per unit volume

E(k, t) = Eu′′u′′(k, t) + Ev′′v′′(k, t) . (253)

Oscillations are present in the spectra for small and intermediate wavenumbers k at early times,
and following reshock. These oscillations are damped out at late times, as indicated by the
smoothly decaying spectra at large t. Reshock induces a jump in the energy spectra between
t = 6 ms and t = 7 ms at all scales of the flow by exciting a wide spatial range of fluctuations,
thereby imparting additional energy into the mixing layer. For times t > 8 ms, the energy
spectra appear to decay very slowly. Note that Eu′′u′′(k, t) is peaked at k ≈ 1.5, while the peak
of Ev′′v′′(k, t) corresponds to the largest scale of the flow. As expected, there is more energy
content in the streamwise velocity fluctuations than in the spanwise velocity fluctuations. For
the same reason, the evolution of E(k, t) is dominated by that of Eu′′u′′(k, t). There is no
apparent power-law scaling of the spectra over the limited range of scales supported by the
modest grid resolution. The spectra turn up slightly at large wavenumbers due to aliasing
errors.

The enstrophy density is

Ω(x, y, t) =
|ω(x, y, t)|2

2
, (254)

and the volume integral of the enstrophy density yields

Ω(t) =
∫∫

Ω(x, y, t) dxdy . (255)

The fluctuating enstrophy density is

Ω(x, y, t)′′ =
|ω′′(x, y, t)|2

2
, (256)

and the volume integral of the fluctuating enstrophy density yields the fluctuating enstrophy

Ω(t)′′ =
∫∫

Ω(x, y, t)′′ dxdy . (257)

The time-evolution of the fluctuating enstrophy spectrum per unit volume Eω′′ω′′(k, t) is shown
in Fig. 33. In a homogeneous flow, the enstrophy is related to the fluctuating kinetic energy
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Figure 32: Time-evolution of the streamwise and spanwise fluctuating kinetic energy spec-
tra Eu′′u′′(k, t) (left column) and Ev′′v′′(k, t) (right column), respectively. The units of the
fluctuating kinetic energy spectra are cm3/s2.
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Figure 33: Time-evolution of the (total) fluctuating kinetic energy spectrum E(k, t) =
Eu′′u′′(k, t) + Ev′′v′′(k, t) (left column) and fluctuating enstrophy spectrum Eω′′ω′′(k, t) (right
column). The units of the fluctuating kinetic energy spectrum are cm3/s2, and the units of
the fluctuating enstrophy spectrum are cm/s2.
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spectrum by Eω′′ω′′(k, t) = k2E(k, t), so that the peak of the fluctuating enstrophy spectrum
is weighted toward smaller scales than that of the kinetic energy spectrum. The enstrophy
spectrum is less steep than the fluctuating kinetic energy spectrum. As in the case of E(k, t),
reshock primarily amplifies the enstrophy spectrum but does not change its shape. A slow
decay of the enstrophy spectrum is also observed for late times. Before and immediately after
reshock, the fluctuating enstrophy spectrum is more oscillatory than the fluctuating kinetic
energy spectrum, particularly at large wavenumbers.

Spectral anisotropy of the velocity components can be investigated by considering the
time-evolution of the ratio of the streamwise and spanwise fluctuating kinetic energy spec-
tra Eu′′u′′(k, t)/Ev′′v′′(k, t), as shown in Fig. 34. Spectral isotropy is achieved if all scales
contain the same amount of energy, i.e., if the ratio approaches unity. As seen in the figure,
significant spectral anisotropy exists in the intermediate and small scales, with the ratios at-
taining a nearly constant value at large wavenumbers. It is interesting to note that a sharp
increase in the ratio of the streamwise and spanwise fluctuating kinetic energy is observed
following reshock and the interaction with the reflected rarefaction wave. This is expected
as the arrival of the waves excites velocity fluctuations in all directions, thereby reducing the
ratio. However, as the instability further evolves following the interaction with the waves,
the fluctuations in the streamwise kinetic energy dominate, and this ratio sharply increases.
The ratio again decreases at late times, as dissipative mechanisms damp the larger streamwise
fluctuations.

Figure 35 shows the time-evolution of the density variance spectrum per unit volume
Eρ′ρ′(k, t) and the pressure variance spectrum per unit volume Ep′p′(k, t). The density vari-
ance spectrum shows very little variation with time, indicating that density fluctuations are
not as strongly affected by reshock as other quantities. Moreover, the magnitude of the density
variance spectrum is very small for all times, indicating that the density variance is very small
and that the flow is nearly-incompressible. Additional numerical evidence exists to support
this conclusion in Richtmyer-Meshkov unstable flows [47]. The issue of near-incompressibility
after reshock will be revisited in Part 4 of this report [70]. The evolution of the spectrum also
shows the interaction of reflected waves with the mixing layer, which have a profound effect on
the pressure variance spectrum. The pressure variance spectrum exhibits a jump as a result
of reshock at t = 7 ms, and also exhibits a jump at t = 11 ms when the reflected rarefaction
wave interacts with the mixing layer. At late times, both the pressure and density variance
spectra exhibit a slow decay in time. There is no apparent power-law scaling of these spectra.

The investigation of the spectral evolution above both prior to and following reshock pro-
vides a spectral quantification of the complex features observed in the density and Schlieren
images. In particular, the spectral investigation shows that a fairly broad range of scales
already exists prior to reshock, despite the fact that the roll-up from a single-mode initial
perturbation is considered. This indicates that the Richtmyer-Meshkov instability develops
non-trivial spectral content from its inception. At reshock, the fluctuations in all fields (except
the density) are amplified nearly uniformly across all scales. From the results obtained here,
reshock does not appear to broaden the range of scales, but primarily imparts energy into
structures of all sizes. At late times, dissipation mechanisms smooth the spectra. When the
shock is far away and the reflected waves become weaker, a very slow decay is observed in the
spectra. The density spectrum reveals that the density fluctuations remain small and are not
affected strongly by reshock. As a result, measurements of spectral quantities using a density
weighting [59, 60] are not expected to provide different conclusions: this was confirmed by
comparing both density- and non-density-weighted spectra and is not shown here. Compared
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Figure 34: Time-evolution of the ratio of the streamwise and spanwise fluctuating kinetic
energy spectra Eu′′u′′(k, t)/Ev′′v′′(k, t).
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Figure 35: Time-evolution of the density variance spectrum Eρ′ρ′(k, t) (left column) and the
pressure variance spectrum Ep′p′(k, t) (right column). The units of the density variance spec-
trum are g2/cm5 and the units of the pressure variance spectrum are bar2cm.
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to the fluctuating kinetic energy spectrum, the fluctuating enstrophy spectrum shows a more
pronounced cascade toward smaller scales, as expected by two-dimensional turbulence phe-
nomenology [116, 58, 117]. Compared to the other spectra, the pressure variance spectrum
shows the effects of reflected waves with increased values observed following reshock at t = 7
ms and during the arrival of the reflected rarefaction wave at t = 11 ms. The decomposition
of the fluctuating kinetic energy spectrum into the streamwise and spanwise components in-
dicates that the streamwise component is dominant and that significant statistical anisotropy
exists even at late times.

4.4 Time-evolution of statistics

Statistics within the mixing layer were obtained by integrating the energy spectrum per unit
volume over all modes,

Eφφ(t) =
φ2

2
(258)

=
∫ ∞

0
Eφφ(k, t) dk .

Numerically, this integral is a sum over all wavenumbers up to the Nyquist wavenumber (187)
kmax. As a numerical verification, statistics were computed by summing the energy spectra over
all wavenumbers,

∑Ny

n=1Eφφ(kn, t), and directly by a volume integration,
∑

i∈S
∑Ny

j=1 φ(xi, yj , t)2/2
where S = {i : xi ∈ [as(t), ab(t)]}, to ensure that these results agree.

Figure 36 shows the time-evolution of the streamwise and spanwise fluctuating kinetic
energy per unit volume

Eu′′u′′(t) =
u′′2

2
(259)

=
∫ ∞

0
Eu′′u′′(k, t) dk ,

Ev′′v′′(t) =
v′′2

2
(260)

=
∫ ∞

0
Ev′′v′′(k, t) dk ,

and the total fluctuating kinetic energy per unit volume

E(t) = Eu′′u′′(t) + Ev′′v′′(t) , (261)

illustrating the relative magnitude of the two components. Initially, Ev′′v′′(t) is much smaller
than Eu′′u′′(t) due to the fact that the initial shock primarily excites modes in the streamwise
direction (as shown in Fig. 32). The kinetic energy decreases following the initial shock, while
reshock deposits additional vorticity and amplifies the kinetic energy. The reshock and the
subsequent reflected waves also excite spanwise velocity fluctuations. The contributions from
the spanwise and streamwise fluctuations are very similar at late times, indicating an approach
of the flow to statistical (but not spectral) isotropy. The ratio of the spanwise and streamwise
kinetic energy is shown in Fig. 37. The ratio approaches unity at late time, indicating an
approach to isotropy.
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Figure 36: Time-evolution of the fluctuating kinetic energy E(t) and its components, the
enstrophy Eω′′ω′′(t), density variance Eρ′ρ′(t), and pressure variance Ep′p′(t).
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Figure 37: Time-evolution of the ratio of the streamwise and spanwise fluctuating kinetic
energy Eu′′u′′(t)/Ev′′v′′(t). The ratio approaches unity at very late time, indicating an approach
to statistical isotropy. Note, however, that the kinetic energy spectra are still spectrally-
anisotropic at late times.
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The time-evolution of the fluctuating enstrophy per unit volume

Eω′′ω′′(t) =
ω′′2

2
(262)

=
∫ ∞

0
Eω′′ω′′(k, t) dk

is also shown in Fig. 36. Note the large increase in the fluctuating enstrophy during reshock.
Following reshock, the enstrophy decays, but the arrival of the reflected waves compensates
for the decrease and a nearly constant value is observed for t ≈ 7–11 ms. Finally, after the
interaction of the reflected rarefaction with the mixing layer at t = 11 ms, the enstrophy begins
to decay again.

Finally, consider the time-evolution of the density variance

Eρ′ρ′(t) =
ρ′2

2
(263)

=
∫ ∞

0
Eρ′ρ′(k, t) dk

and the pressure variance

Ep′p′(t) =
p′2

2
(264)

=
∫ ∞

0
Ep′p′(k, t) dk .

The density variance is not as significantly affected by reshock and by other reflected waves as
the other quantities, and remains nearly constant in time. By contrast, the pressure variance
is much more sensitive, exhibiting peaks as waves interact with the mixing layer. The first
peak at t = 7 ms corresponds to the arrival of the reflected shock; the second peak at t = 11
ms corresponds to the arrival of the reflected rarefaction wave, and; the third peak at t = 15
ms corresponds to the arrival of the reflected compression wave generated by the refraction of
the rarefaction wave at t = 11 ms. The pressure variance is the only quantity considered that
captures the effect of this third interaction. With the exception of Eρ′ρ′(t), all of the remaining
statistics decrease from their initial values until reshock. Also, with the exception of Eρ′ρ′(t),
all of the remaining statistics decrease sharply following reshock. With the present reflecting
boundary condition, the simulation does not achieve a purely-decaying state at late times.
Later in § 4.6, the reflecting boundary condition is changed to outflow in order to remove the
effects of reflected waves following reshock.

The time-evolution of volume-integrated (wavenumber-integrated) variances (statistics)
was investigated above. The fluctuating kinetic energy exhibits a sharp peak corresponding
to reshock, with a rapid increase followed by a rapid decrease, followed then by a decay. The
decay becomes more established following the interaction with the reflected rarefaction wave at
t = 11 ms. Comparison of the streamwise and spanwise components indicates that statistical
isotropy is achieved at late times. In fact, the total energy content of the spanwise compo-
nent increases following the interaction with the reflected waves, and the large values of the
streamwise component decrease due to dissipation. The enstrophy also exhibits a sharp peak
corresponding to reshock and then a rapid decay following the interaction with the reflected
rarefaction wave. The density variance is very small in magnitude and remains nearly constant,
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although signatures of the reflected shock and of the reflected rarefaction are apparent. The
pressure variance shows narrow, sharp peaks corresponding to the reshock and to the arrival
of the reflected rarefaction wave, and further shows the arrival of the reflected compression
wave at late times. In all three cases, the waves excite fluctuations that are apparent in the
increased values of the statistics. The fluctuations are damped and the statistics decrease in
magnitude as time evolves.

4.5 Comparison of mixing quantities at selected times

In the previous sections, a temporal progression of each quantity was presented at time intervals
of 1 ms. Here, comparisons of quantities at selected times are presented together to further
elucidate the structure of the mixing as characterized by each quantity. The times are selected
to reflect key aspects of the flow evolution:

1. at t = 6 ms after the initial interaction with the shock but before reshock ;

2. at t = 7 ms immediately after reshock ;

3. at t = 12 ms for large times after reshock, and;

4. at t = 18 ms for late times.

Also presented is a comparison of quantities immediately before and after reshock to quantita-
tively investigate the effect of reshock on the mixing process. These quantities include molar
profiles, volume fraction profiles, mixing fractions, and fluctuating energy spectra. Note that
in the figures, quantities are shown on an x-axis recentered according to the location of the
centerline of the mixing layer.

4.5.1 Comparison of mixing quantities at early and late times

Figure 38 shows the mixing profiles and spectra at t = 6 ms in the left column and at t = 7 ms
in the right column. Consider first the mole fraction profile at t = 6 ms just before reshock.
The mole fraction profile 〈X〉 shows the distribution of mass, indicating the presence of the
well-developed roll-up corresponding to the peak. To its right, the decrease in 〈X〉 corresponds
to the bubble of the lighter air(acetone) rising into the heavier SF6. The plot of 〈Xp〉 shows
localized peaks, corresponding to the center of the roll-ups where mixing is most intense. The
value of 〈Xp〉 decreases at the boundaries of the roll-up region. The profile of X (〈Xp〉) shows
a first peak corresponding to the entire roll-up region and a second peak corresponding to the
tip of the bubble. Finally, the mixing fraction ξ shows a central peak indicating that mixing is
most intense at the center of the roll-ups. Additional peaks are observed at the tip of the spike
and at the tip of the bubble, resulting from the rapid decrease of X (〈Xp〉) in those regions.
The volume fraction profiles 〈f1〉 and 〈f2〉 show the relative volumetric distribution of the two
fluids across the mixing layer. The molecular mixing fraction θ shows that the two fluids are
mixed the most in the roll-up region. Finally, the fluctuating kinetic energy spectrum per
unit volume E(k, t) shows that most of the energy is contributed by the streamwise velocity
component.

Consider the mole fraction profile at t = 7 ms shortly after reshock. The mass is more
evenly distributed, as measured by the monotonic profile of 〈X〉. Note that the peak previously
observed at t = 6 ms has disappeared as a result of the mass redistribution. Mixing is most
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intense closer to the pure air(acetone), as measured by 〈Xp〉 and ξ. The decrease in Xp (〈X〉)
close to the air(acetone) mixture indicates the presence of large, low-density regions. The
volume fraction profile 〈f1〉 shows qualitatively similar behavior.

Figure 39 shows the mixing profiles and spectra at t = 12 ms in the left column and at
t = 18 ms in the right column. Consider the mole fraction profile 〈X〉 at t = 12 ms, which
shows a steadily increasing distribution of mass across the layer. This mass is well-mixed in the
layer, as indicated by 〈Xp〉. However, large structures are present near the center of the layer,
as indicated by the large values of Xp (〈X〉). The plot of ξ indicates a well-mixed region closer
to the air(acetone). However, large, low-density regions are present as Xp (〈X〉) is very small,
due to the very small amount of SF6, as indicated by 〈X〉. Instead, a region with more mixing
is observed closer to the center of the mixing layer. The quantities at t = 18 ms show increased
homogeneous mixing as indicated by a: (1) monotonic distribution of mass captured by 〈X〉,
and the volume fraction profiles 〈f1〉 and 〈f2〉; (2) distribution of 〈Xp〉 that does not exhibit
large peaks, and; (3) value of Xp (〈X〉) exhibiting a nearly constant mean value. Further note
that the fluctuating kinetic energy spectrum exhibits little change from t = 12 ms to t = 18 ms.
The streamwise component continues to dominate the spanwise component by approximately
an order of magnitude in the large and intermediate scales, and by approximately three orders
of magnitude in the smallest scales.

The results presented here indicate that a quantitative characterization of the mixing pro-
cess can be obtained by analyzing the profiles of different mixing quantities. In particular, the
profiles of the mole and volume fractions 〈X〉, 〈f1〉, and 〈f2〉 indicate the relative distribution
of mass in the layer; the reaction profile 〈Xp〉 shows how well the mass is mixed; the reaction
profile Xp (〈X〉) indicates the presence of large, unmixed regions, and; the mixing fraction θ
quantifies the relative mixing of regions in the layer. Thus, this analysis provides a quantita-
tive basis for the qualitative description of the density evolution. The analysis of these plots
at selected times during the mixing process shows that reshock compresses the layer and, as
the inversion occurs, a well-mixed region develops close to the SF6. At late times following
reshock, mixing is characterized by the formation of large structures within a nearly uniform
and well-mixed distribution of mass. The formation of large structures captured by increased
values of Xp (〈X〉) is consistent with what is observed in the density plots and is consistent
with two-dimensional turbulence phenomenology and the inverse cascade from small scales to
larger scales.

4.5.2 Comparison of mixing quantities immediately before and after reshock

Comparisons of quantities at t = t− = 6.38 ms immediately prior to reshock and at t = t+ =
6.68 immediately following reshock are presented here. The mole fraction profiles are shown
in Fig. 40. The x-axis was recentered and rescaled to provide an immediate comparison of
the quantities. The following convention is adopted: quantities before and after reshock are
shown in blue and red, respectively. The mole fraction profile 〈X〉 exhibits a complex structure
resulting from the compression during reshock. The production quantity 〈Xp〉 increases during
reshock, resulting in greater overall mixing. The largest peak in 〈Xp〉 located near the pure
SF6 is a consequence of the inversion, which flattens the tip of the bubble and also creates
small-scale structures. The volume fractions, as well as the mixing fractions θ and ξ, are
shown in Fig. 41. The volume fraction profiles 〈f1〉 and 〈f2〉 show a sharp change close to the
pure SF6 region resulting from the flattening of the bubble front. Note the strongly increased
mixing, as measured by the mixing fractions θ and ξ following reshock.
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Figure 38: Profiles of 〈X〉, 〈Xp〉, Xp(〈X〉), ξ, 〈f1〉, 〈f2〉, θ, and the fluctuating kinetic energy
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Figure 39: Profiles of 〈X〉, 〈Xp〉, Xp(〈X〉), ξ, 〈f1〉, 〈f2〉, θ, and the fluctuating kinetic energy
spectrum E(k, t) and its components at t = 12 ms (left column) and at t = 18 ms (right
column).
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Figure 40: Comparison of 〈X〉, 〈Xp〉, and Xp(〈X〉) at t− = 6.38 ms and at t+ = 6.68 ms.
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Figure 41: Comparison of 〈f1〉, 〈f2〉, θ, and ξ at t− = 6.38 ms and at t+ = 6.68 ms
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The fluctuating kinetic energy spectrum shown in Fig. 42 sharply increases following
reshock. The fluctuating enstrophy, and pressure variance spectra also show sharp increases
following reshock. By contrast, the density variance spectrum increases only slightly following
reshock.

Finally, Fig. 43 shows the ratio of spectral quantities after and before reshock to quantify
the amplification in energy as a function of wavenumber k. The fluctuating kinetic energy
spectrum E(k, t) is amplified uniformly by a factor of ≈ 200 for large wavenumbers. The largest
amplification occurs at the largest scales. For the remaining spectra, the largest amplification
occurs in the intermediate scales. The fluctuating enstrophy spectrum Eω′′ω′′(k, t) is amplified
differently in different wavenumber regions. The amplification is large for small wavenumbers,
reaching a peak of ≈ 1300 near k = 30. The amplification reduces for large wavenumbers and
oscillates about a value of ≈ 100. The density variance spectrum Eρ′ρ′(k, t) does not undergo
significant amplification compared to the other spectra, and shows an average amplification of
≈ 2.5. By contrast, the pressure variance spectrum undergoes the most amplification, showing
a peak of ≈ 6× 106 for k ≈ 20–25 before relaxing to ≈ 106 at large wavenumbers.

The results presented here characterize the effects of reshock on the mixing layer, and
quantify the energy deposition into the layer due to baroclinic production mechanisms. Reshock
compresses the layer and shifts mass from the SF6 side toward the air(acetone) side, consistent
with the direction of reshock from the heavier SF6 into the lighter air(acetone). Reshock
further modifies the structures of mixing, generating a well-mixed region close to the SF6 and
peaks closer to the air(acetone). Reshock generates a very well-mixed, compressed region, as
measured by the mixing fractions θ and ξ. The energy deposition by reshock can be quantified
by the amplification of the energy spectra. The analysis shows that reshock amplifies (almost
uniformly) the kinetic energy spectra by a factor of approximately 200 with slightly larger
values for the lower modes. The enstrophy spectrum instead shows a larger amplification in
the lower modes and decreasing amplification for higher modes, consistent with the formation of
large-scale, vortical structures observed at late times following reshock. The pressure variance
is amplified the most by reshock and uniformly across all scales. By contrast, the density
variance is slightly amplified by reshock, indicating that it does not have a significant role in
the dynamics of the mixing layer following reshock for the flow configuration considered here.
This analysis shows that the pressure, kinetic energy, and enstrophy spectra are useful for the
characterization of the modal distribution of energy within the mixing layer following reshock.

4.6 The effects of reflected waves: comparison of quantities computed from
simulations using outflow and reflecting boundary conditions

Following reshock, the mixing layer undergoes further interactions with reflected waves from
the end wall of the shock tube test section. The most significant reflected wave is the rarefac-
tion wave formed during reshock. This wave interacts with the mixing layer at t ≈ 10 ms.
The interaction with the rarefaction wave causes the formation of a compression wave, which
interacts with the mixing layer at t ≈ 15 ms, as seen in 〈v〉xy and 〈p〉xy in Fig. 31.

In this section, the boundary condition at the right end of the computational domain (cor-
responding to the end wall of the test section) is varied from reflecting to outflow immediately
following reshock. This change allows the reflected rarefaction wave created during reshock to
exit the computational domain, so that no further interactions of waves with the mixing layer
occur. The purpose of this study is to investigate the properties of mixing in the decay regime,
as distinguished from those in the quasi-decay regime occurring when reflected waves inter-
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Figure 42: Comparison of the fluctuating kinetic energy spectrum E(k, t), fluctuating enstrophy
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act with the evolving interface following reshock. The following convention is adopted in this
section. Results obtained when the reflected rarefaction wave exits the computational domain
and does not interact with the mixing layer (corresponding to outflow boundary conditions)
are shown in red, and results obtained when the reflected waves interact with the mixing layer
(corresponding to reflecting boundary conditions) are shown in blue. The results overlap from
the time of reshock t = 6 ms until t ≈ 10 ms when the reflected rarefaction wave interacts
with the mixing layer. In general, note that quantities computed with the outflow boundary
condition are smoother compared to those computed with the reflecting boundary condition,
due to the absence of wave interactions. Another objective of the present investigation is to
understand the effects of a reflected rarefaction wave on the evolution of a mixing layer in the
same spirit that the study of reshock investigates the effects of a shock wave on an evolving
mixing layer.

4.6.1 The effects on the mixing layer width, mixing fractions, and profiles

The top row of Fig. 44 shows the time-evolution of the mixing layer width h(t) and the
lengthscale W (t). The reflected rarefaction amplifies the growth rate of the mixing layer. Also
shown in the plot of h(t) are the predictions of the Mikaelian and the Brouillette-Sturtevant
models for the reshocked interface growth. These quantities were previously shown in Fig. 23
for the case of reflecting boundary conditions. After t = 11 ms, the width corresponding to the
outflow boundary condition has a considerably smaller growth rate than that corresponding
to the reflecting boundary condition, showing that the reflected rarefaction wave amplifies the
growth of the mixing layer. The growth of W (t) qualitatively resembles that of h(t).

The production and mixing fractions Pt, Pm, Ξ, and Θ are shown in the middle row of
Fig. 44. Consider the time-evolution of Pt and Pm. The simulation with the outflow boundary
condition yields a slightly larger value of Pt than with the reflecting boundary condition. The
rarefaction wave increases the mixing layer width and therefore, the overall production fraction
decreases when averaged over a larger mixing layer. Similarly, Pm corresponding to the outflow
boundary condition is smaller than that corresponding to the reflecting boundary condition,
as the amount of product is decreased. The additional reflected waves induce oscillations in
Pt and Pm.

Consider the time-evolution of the mixing fractions Ξ = Pt/Pm and Θ. For the outflow
boundary condition, Ξ and Θ are larger than for the reflecting boundary condition, as the
reflected rarefaction wave increases the mixing layer width and, thus, decreases the overall
mixing as measured by these fractions.

The time-evolution of the volume-averaged streamwise and spanwise velocities 〈u〉xy and
〈v〉xy, and pressure 〈p〉xy are shown in the bottom row of Fig. 44. As expected, 〈u〉xy does
not approach zero at late times in the case of the outflow boundary condition, but remains
at a nearly constant value following reshock. In both cases, 〈v〉xy = 0. The volume-averaged
pressure 〈p〉xy also remains at a nearly constant value following reshock.

The results presented here reveal the effects of a rarefaction wave interacting with an
evolving mixing layer. It is observed that a reflected rarefaction wave causes the mixing layer
to grow, consistent with the additional vorticity and energy deposition caused by the wave. The
mixing, as measured by the integrated fractions Θ and Ξ, is reduced by a reflected rarefaction
wave. In fact, the reflected rarefaction wave increases the width of the mixing layer resulting
in smaller values of the mixing fractions.
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Figure 44: Time-evolution of the mixing layer widths h(t) and W (t), the production fractions
Pt and Pm, mixing fractions θ and ξ, and volume-averaged velocities 〈u〉xy, 〈v〉xy and pressure
〈p〉xy for reflecting and outflow boundary conditions.
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4.6.2 The effects on statistics

A comparison of the evolution of statistics for reflecting and outflow boundary conditions
is shown in Fig. 45. Consider the fluctuating kinetic energy per unit mass E(t) and its
components Eu′′u′′(t) and Ev′′v′′(t). In the case of the outflow boundary condition, the energy
is not increased by the reflected waves, and therefore decays. The reflected rarefaction wave also
increases the energy in the spanwise component, contributing to the statistical isotropization
of the flow. This is not observed in the case of the outflow boundary condition, in which both
components retain their separation.

Consider the evolution of the fluctuating enstrophy Eω′′ω′′(t). The enstrophy for the case of
reflecting and outflow boundary conditions is very similar, indicating that the reflected waves
do not increase the enstrophy significantly.

The behavior of the density variance Eρ′ρ′(t) is unusual. Note that Eρ′ρ′(t) correspond-
ing to the outflow boundary condition is greater than Eρ′ρ′(t) corresponding to the reflecting
boundary condition, indicating that the reflected rarefaction wave decreases the density fluc-
tuations.

The behavior of the pressure variance Ep′p′(t) indicates that the pressure fluctuations are
nearly constant in the absence of reflected waves. By contrast, the fluctuations corresponding to
the reflecting boundary condition undergo a sudden transient increase following the interaction
with reflected waves, and approach the nearly constant value corresponding to the outflow
boundary condition shortly thereafter.

The results above characterize the effects of the reflected rarefaction wave on the mixing
layer. The reflected rarefaction wave, while not significantly increasing the energy content in
the layer, plays an important role in achieving statistical isotropy by exciting fluctuations in
the periodic direction. The results also indicate that the reflected rarefaction wave has a small
impact on the enstrophy and the pressure variance evolution. By contrast, reshock causes a
compression of the layer and a significant deposition of energy that allows the layer to grow
very rapidly with the formation of complex structures. The reflected rarefaction wave instead
“stretches” the mixing layer, causing it to grow, but provides little additional energy causing
the overall mixing to decrease, as measured by the mixing fractions. The additional mixing
provided by the reflected waves is responsible for the statistical isotropy observed earlier.
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5 The effects of spatial resolution and order of spatial recon-
struction on mixing properties, circulation, spectra, and statis-
tics

The effects of the spatial (grid) resolution and order of spatial reconstruction on the mixing
quantities are self-consistently and quantitatively investigated in this section. Third-, fifth-,
and ninth-order reconstructions are considered, together with grid resolutions of 128, 256, and
512 points per initial perturbation wavelength λ. The objective of this study is to determine
the sensitivity of mixing quantities to the order of reconstruction (formal, or design, order of
accuracy in sufficiently smooth flow regions) and to the spatial resolution. Most simulation
studies involving the solution of the Euler equations have focused on the numerical ‘conver-
gence’ of some small set of quantities (or a quantity) (e.g., perturbation amplitude or mixing
layer width in Rayleigh-Taylor [120, 44, 32] and Richtmyer-Meshkov instability [49, 48, 28])
over a limited range of time with respect to increasing spatial resolution. The comparison of
quantities obtained using different orders of reconstruction and grid resolution in the present
work is conducted in the spirit of the investigation of Shi, Zhang and Shu [114], who considered
double Mach reflection and Rayleigh-Taylor instability in two dimensions using the fifth- and
ninth-order WENO method. Their investigation emphasized the computational advantage of
higher-order WENO schemes over lower-order WENO schemes for complex flows mainly using
qualitative (visual) comparisons. The present investigation is both quantitative and qualitative,
and examines to what extent different orders of WENO reconstruction and different spatial
resolutions capture specific physical quantities characterizing Richtmyer-Meshkov instability-
induced mixing. The investigation is applied to all of the quantities considered in the previous
section, including mole fractions, mixing fractions, energy spectra, and statistics. To our knowl-
edge, this is the first systematic investigation of profiles, spectra, and statistics as a function of
both spatial resolution and order of reconstruction in the case of the Richtmyer-Meshkov insta-
bility. The HOPE code is ideal for such an investigation, as it is possible to perform numerical
simulations identical in every other respect except the order of reconstruction: this allows a
self-consistent study that is distinct from utilizing different numerical methods with different
formal orders of spatial and temporal accuracy (see [30] where the results from a second-order
centered essentially non-oscillatory (CENO) method, a second-order Godunov method, and a
spectral/compact finite-difference method applied to the two-dimensional Richtmyer-Meshkov
instability are compared).

The present study constitutes the first systematic investigation of the effects of the order
of flux reconstruction and grid resolution on the Richtmyer-Meshkov instability evolution. The
results were obtained for a two-dimensional Euler flow, so that the differences in the evolution
depend solely on the numerical dissipation of the method and not on a physical dissipation
or vortex stretching in three-dimensional simulations. In Part 4 of this report [70], three-
dimensional simulations are performed using the fifth-, ninth-, and eleventh-order WENO
method, and a systematic investigation of two- and three-dimensional effects is presented.

The following conventions are adopted in the presentation of the results in this section.
Quantities obtained using third-, fifth-, and ninth-order WENO reconstruction are shown in
green, red, and dark blue, respectively; different line styles are used to present results with
varying grid resolution. The simulations obtained with an initial resolution of 512, 256, and
128 points per initial perturbation wavelength are denoted as fine, medium, and coarse grid,
respectively, and are presented using a solid line, dashed line, and dash-dot line, respectively.
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The results presented in § 4 were obtained using the medium resolution grid and fifth-order
reconstruction: this choice was based on the fact that the fifth-order WENO method has been
used by a large number of investigators, while the ninth-order WENO method is relatively new
[14].

This section is organized as follows. First, details of the numerical simulations are presented
in § 5.1. The results for the mixing layer width are presented in § 5.2, followed by the results
for the time-evolution of local mixing quantities and mixing fractions in § 5.4 and § 5.5,
respectively. The results for spectra and statistics are presented in § 5.6 and § 5.7, respectively.
Finally, the time-evolution of the density and vorticity fields is shown at intervals of 1 ms in
§ 5.8 to provide qualitative comparisons.

5.1 Grid resolutions and orders of reconstruction

Numerical simulations were performed using uniform grid resolutions with ∆x = ∆y. The
grids were chosen so that points of the medium grid corresponded with every other point of
the fine grid. Similarly, the coarse grid was chosen so that its points would correspond to every
other point of the medium grid and with every four points of the fine grid.

To define the grids, first chose the grid spacings

∆x = ∆y (265)

=
λ

N
,

rounding to a rational number divisible by four, yielding (∆x)fine = 0.01158984375 cm (slightly
larger than the theoretical value ∆x = λ/512 = 0.01158854167 cm). This choice corresponds
to 768 points in the domain with Ly = 8.9 cm. Similarly, (∆x)medium = 0.0231796875 cm with
N = 384, and (∆x)coarse = 0.046359375 cm with N = 192. To align the grids, the starting
and ending points of the computational domain were adjusted to account for the distribution
of points by the numerical method. In the y-direction, the first and second grid points are at
locations y1 = −∆x/2 and y2 = ∆x/2. For this reason, if the starting location is chosen to be
at y = 0 for all grids, then the grids would not be aligned. Thus, choose y = 0 for the fine
grid, corresponding to the first two grid points at y1 = − (∆x)fine /2 and y2 = (∆x)fine /2.
For the medium grid, shift by (∆x)fine /2 to the left so that the position of the first two points
are at y1 = −3 (∆x)fine /2 and y2 = (∆x)fine /2. For the coarse grid, shift by 3 (∆x)fine /2,
yielding y1 = −5 (∆x)fine /2 and y2 = (∆x)fine /2. In all three cases, the points at y2 coincide.
A similar procedure is followed for the x-direction. The actual values for the number of grid
points in the y-direction and for the length of the domain Ly used in the simulations were
double the values described above, as the symmetry option in the HOPE code was activated (see
[68]). The grid resolutions are summarized in Table 3.

5.2 The effects on the mixing layer width

Shown in Fig. 46 is a comparison of the dependence of the mixing layer width on the grid
resolution and on the order of the WENO reconstruction up to t = 18 ms. Also shown in Fig.
46 is the ratio of the widths with respect to the width measured for the ninth-order simulation
on the fine grid. Prior to reshock, the mixing layer width is weakly-dependent on the resolution
and on the order of reconstruction, with all simulations giving very similar results. This is
due to the fact that the flow is dominated by a single, large-scale evolving bubble (or spike),
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Fine grid Medium grid Coarse grid
N per λ 512 256 128
∆x (cm) 0.01159 0.02318 0.04636
Ny 1536 768 384

Ly (cm) [0, 17.8] [−0.00579, 17.79621] [−0.01739, 17.78462]
Nx (initial) 801 401 201

Lx (cm) (initial) [0, 9.271875] [−0.00579, 9.26608] [−0.01739, 9.25449]

Table 3: The initial grid resolutions used in the numerical simulations. The choice of starting
and ending points ensures that all of the grids are aligned with one another.

the front of which is not significantly affected by dissipation. However, following reshock,
the dependence on both order and resolution becomes significant. In particular, decreasing
the order of the WENO reconstruction, as well as decreasing the grid resolution, results in
smaller mixing layer widths. Note that the differences are further amplified by the arrival
of the reflected rarefaction wave at t ≈ 10 ms and further increase later. These differences
can be understood as follows. Lower order of reconstruction and coarser grids correspond
to higher numerical diffusion. Increased numerical diffusion damps the velocity fluctuations
and in particular, the streamwise fluctuations associated with the growth of the mixing layer.
Therefore, increased numerical diffusion is consistent with smaller mixing layer widths. In
addition, the formation of small-scale structures is also inhibited, resulting in smaller baroclinic
circulation deposition during a wave-interface interaction compared to a high-resolution, high-
order simulation exhibiting small-scale structures. As a result, the mixing layer width is further
decreased. This mechanism is clearly illustrated in § 5.8 where a comparison of the flow features
before and after reshock is presented.

Consider the flow evolution following reshock, but prior to the arrival of the reflected
rarefaction wave during the time interval t ∈ [6.5, 10.5] ms. The mixing layer widths become
closer as the grid resolution doubles and the order of reconstruction increases. At late times,
the widths from the third-order simulations differ by ≈ 5 cm as the grid is refined. By contrast
the widths obtained from the fifth- and ninth-order simulations differ by ≈ 1 cm as the grid
is refined. The plot of the ratio of the widths show evidence of ‘convergence’ as the value
approaches unity for the ninth-order simulations.

The flow at late times after t = 15 ms shows jumps and oscillations as the cutoff value
used to determine the mixing layer width is approached. In fact, high-resolution, high-order
simulations show significant fragmentation of the mixing layer, resulting in the creation of small
structures that may or may not cross the cutoff value used to determine the layer width. These
issues persist even as the cutoff value is decreased or increased. One approach to address this
issue is to use the lengthscale W obtained from integrating the product of the volume fractions.
However, it is not clear howW is related to the mixing layer width h, although they have similar
qualitative behavior.

Consider a comparison of the mixing layer amplitude obtained using third-, fifth-, and
ninth-order spatial reconstruction on the fine, medium, and coarse grids with the experimental
data and with the predictions of the Zhang-Sohn Padé, Vandenboomgaerde Padé, Matsuoka et
al. Padé, and Sadot models. Note that the model parameters are computed using the results
from shock refraction theory and the parameters of the simulation, i.e., the parameters are the
same as those used in § 3.3.7.
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The normalized mixing layer amplitude for simulations performed on the coarse, medium,
and fine grid (when third-order reconstruction is used) are compared in Fig. 47 to the exper-
imental data and to the predictions of the nonlinear models. First note that the coarse grid
simulation shows a large initial discrepancy and a growth that proceeds in steps. This behav-
ior can be explained by considering that the coarse grid has separation ∆x = ∆y = 0.046 as
reported in Table 3. This, in conjunction with the initial diffusive interface (which spreads the
interface across additional grid points), contributes to the large initial discrepancy. The growth
in steps can also be explained in terms of the large grid separation. The plots show that later
into the nonlinear regime the mixing layer amplitude is very similar across all simulations. This
is consistent with the observation made earlier regarding the weak dependence of the mixing
layer width on the order of reconstruction and on the grid resolution for times prior to the
arrival of the reflected rarefaction wave. In all cases, the results of the numerical simulations
lie between the experimental data points and are very close to the predictions of the nonlinear
Zhang-Sohn Padé model. The Vandenboomgaerde model is the next closest model, with the
Sadot model overestimating the data. This observation is further confirmed by considering the
ratios of the amplitudes, which show that the predictions of the Zhang-Sohn models are within
2-3% of the mixing layer amplitude obtained from the numerical simulations.

Figure 48 shows the comparisons when fifth-order spatial reconstruction is used. The plot
on the coarse grid also shows an initial discrepancy, but not as severe as observed for the
third-order simulation on the coarse grid. Note that the growth also proceeds in steps. The
comparison to experimental data in the nonlinear regime shows that the mixing layer amplitude
lies between the experimental points for the medium and coarse grid simulation, and slightly
below the experimental data for the fine grid simulation. The comparison to the predictions
of the nonlinear Padé models shows that the Zhang-Sohn model is in best agreement with the
data. The predictions from the Vandenboomgaerde model give the next best agreement, and
the predictions of the Sadot model give the least agreement. The plots of the ratios support
this conclusion.

Figure 49 shows the comparisons when ninth-order spatial reconstruction is used. The plot
on the coarse grid no longer shows the discrepancy at early times, but still shows the step-like
growth behavior. The data from the simulations now lies very close to the experimental points
as in the case of the coarse grid simulation, or slightly below the experimental data as in the
case of the medium and fine grid simulations. The Zhang-Sohn Padé model shows the best
agreement with the data.

The results above show that the mixing layer width and amplitude exhibit little dependence
on the order of reconstruction and on the grid resolution prior to reshock. However, following
reshock but prior to the arrival of the reflected rarefaction wave, large differences are observed.
As the order of reconstruction and grid resolution are increased, the differences between the
mixing layer widths and amplitudes decrease, providing putative evidence of ‘convergence’.
Following the arrival of the reflected rarefaction wave, the differences increase further. Finally,
at late times, high-order, high-resolution simulations display significant fragmentation of the
complex structures, causing oscillations in the amplitude as the cutoff limit used in the deter-
mination of the amplitude is reached. The differences in the widths and amplitudes observed
following reshock can be attributed to the effects of numerical dissipation, which prevents the
formation of small-scale structures in low-resolution, low-order simulations. Small structures
do not have a direct effect on the width or amplitude prior to reshock. However, the energy
deposited into the layer by the reshock process is directly related to the presence of small-scale
structures, which explains the differences in the widths and amplitudes, as less energy is de-
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Figure 46: The effects of grid resolution and order of reconstruction on the mixing layer
width (top). For times prior to reshock, a weak dependence on the resolution and order is
observed. For times following reshock, a stronger dependence is observed, with lower-order
reconstructions and coarser grids resulting in smaller post-reshock widths. This is due to the
increased numerical dissipation associated with lower-order reconstruction and coarser grids.
The ratios of the mixing layer width with respect to the ninth-order simulation on the fine
grid are also shown (bottom). Following reshock, the ratios corresponding to the ninth-order
simulations on the medium and coarse grids are bounded between ≈ 0.95–1.05 for t > 10 ms,
providing evidence for ‘convergence’. The mixing layer widths obtained from the fifth- and
third-order simulations show no ‘convergence’, even at late times following reshock.
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Figure 47: Comparison of the normalized mixing layer amplitude obtained using third-order
spatial reconstruction on the fine, medium, and coarse grids to the experimental data and with
the predictions of the Zhang-Sohn Padé, Vandenboomgaerde Padé, Matsuoka et al. Padé, and
Sadot models (left column). The ratios of the model predictions to the numerical data are also
shown (right column).
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Figure 48: Comparison of the normalized mixing layer amplitude obtained using fifth-order
spatial reconstruction on the fine, medium, and coarse grids with the experimental data and
to the predictions of the Zhang-Sohn Padé, Vandenboomgaerde Padé, Matsuoka et al. Padé,
and Sadot models (left column). The ratios of the model predictions to the numerical data are
also shown (right column).
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Figure 49: Comparison of the normalized mixing layer amplitude obtained using ninth-order
spatial reconstruction on the fine, medium, and coarse grids with the experimental data and
to the predictions of the Zhang-Sohn Padé, Vandenboomgaerde Padé, Matsuoka et al. Padé,
and Sadot models (left column). The ratios of the model predictions to the numerical data are
also shown (right column).
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posited in low-order, low-resolution simulations. This analysis is revisited later in this report
where the energy deposition at reshock is investigated.

5.3 The effects on the circulation

Presented in this section is an investigation of the effects of order of reconstruction and of
grid resolution on the evolution of the circulation (corresponding to the deposition of vorticity
on the interface). Figure 50 shows the effects on the negative Γ− and positive Γ+ circulation
with closeups before and after reshock. Before reshock, the circulation obtained from all
of the simulations is qualitatively similar. Note that the circulations of low-resolution, low-
order simulations are smaller. This is consistent with the higher numerical dissipation of
low-resolution, low-order simulations. Following reshock, the results are qualitatively similar
until the arrival of the reflected rarefaction wave at t = 10 ms. After the arrival of the reflected
rarefaction, the symmetry of the simulations breaks, resulting in significantly different values
for the positive and negative circulation. No clear correlation between the computed values
and the order of reconstruction or grid resolution is apparent. However, a clear correlation
emerges if the total circulation Γ = Γ+ +Γ− is considered, as shown in Fig. 51. The plot shows
that the values of the total circulation for simulations with the same resolution but different
orders of reconstruction are very similar. In particular, the circulations from simulations with
the coarsest resolutions are closest to zero and also apparently grow linearly. The circulations
from the simulations with the finest resolution are farthest from zero and also appear to grow
linearly. Note that the total circulation does not appear to be affected by the reshock or the
arrival of the reflected rarefaction wave.

The results above indicate that the circulation Γ is affected in the following way by the grid
resolution and order of flux reconstruction. Prior to reshock, low-order, low-resolution simula-
tions give smaller values (in magnitude) of the positive and negative circulation, consistent with
an increased numerical dissipation in these simulations. However, following reshock, but prior
to the arrival of the reflected rarefaction wave, no direct connection can be established between
the magnitudes of the negative and positive circulations and the grid resolution and order of
flux reconstruction. This indicates that additional mechanisms influence the magnitude of the
circulation following reshock. Finally, following the arrival of the reflected rarefaction wave,
symmetry breaks and the magnitudes of the positive and negative circulations become very
different, as expected. However, if the positive and negative circulations are summed, the
resulting total circulation shows a linear growth in time that is strongly dependent on the grid
resolution of the simulation. The total circulation increases more rapidly for simulations with
higher resolution, and the total circulation is independent of the order of flux reconstruction.

5.4 The effects on the mixing profiles

An analysis of the effects of grid refinement and order of reconstruction on quantities repre-
sentative of local mixing are presented in this section. The comparisons are conducted at time
t = 6 ms immediately before reshock, at t = 7 ms immediately after reshock, at t = 12 ms late
after reshock, and at t = 18 ms at very late time following reshock as in § 4.5.

Figure 52 shows comparisons of the mole fraction profile 〈X〉 at the selected times. At t = 6
ms, there is generally good agreement for sufficiently high order and resolution. The results
corresponding to third-order reconstruction at medium resolution are closer to the results
corresponding to fifth-order reconstruction at coarse resolution. Similar behavior is observed
for times immediately following reshock at t = 7 ms, with results in generally good agreement
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Figure 50: The effects of grid resolution on the negative circulation Γ− (left column) and on
the positive circulation Γ+ (right column) with closeups before reshock (middle row) and after
reshock (bottom row).
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as the resolution and the order are increased. At t = 12 ms, the results begin to diverge,
indicating that differences between the small-scale features are more pronounced, which are
captured by the mole fraction. This behavior is also observed when considering the late-time
behavior at t = 18 ms.

Figure 53 shows comparisons of the product mole fraction profile 〈Xp〉. This quantity is
extremely sensitive to both the order and resolution for all times. Note that the spikes at the
beginning and end (corresponding to the top of the bubble and bottom of the spike) are not
captured equally between the methods, due to the different amounts of numerical dissipation
that result in a larger or smaller well-mixed, diffusion layer. Consider time t = 6 ms before
reshock and note that the larger values closer to the middle of the layer (corresponding to
the roll-ups) appear different between the orders and resolutions, with no apparent agreement.
This is due to the different structure of the roll-ups observed across the different orders and
resolutions, as shown in § 5.8. As the order is increased and the grid points are doubled,
additional spiral roll-ups appear, causing the product mole fraction to oscillate for high orders
of reconstruction. At t = 7 ms, the product mole fraction obtained with increasing order of
reconstruction and grid resolution exhibits differences across the entire mixing layer: these
differences are further amplified for later times. Note that the results obtained using the third-
order WENO method at coarse resolution are in very poor agreement with all of the other
results. Again, this is due to the very large numerical dissipation present in low-order WENO
reconstructions, and the different small-scale flow features that is further amplified following
interactions with reflected waves.

Figure 54 shows the product mole fraction profile Xp (〈X〉). At t = 6 ms (before reshock),
the profiles are in close agreement as the resolution and order of reconstruction are increased.
This agreement persists at t = 7 ms immediately after reshock, but the agreement decreases at
later times. The reason for this difference is that Xp (〈X〉) is most sensitive to the small-scale
flow features. The differences in small-scale features are not captured by Xp (〈X〉) until long
after reshock. Therefore, as the order is increased and the resolution is doubled, additional
small-scale features with a different spatial distribution are observed at late times, causing
Xp (〈X〉) to exhibit large variations.

Finally, Figs. 55 and 56 show the molecular mixing fractions θ and ξ, respectively. The
molecular mixing fraction θ is very sensitive to the order and resolution at all times. Consider θ
at t = 6 ms. No clear agreement is observed, with the smallest and largest values obtained from
the ninth- and fifth-order simulations on the fine grid, respectively, indicating that θ is highly
sensitive to the order and resolution. Note that ξ at t = 6 ms shows agreement as the order and
resolution are increased, indicating that ξ is more robust than θ. Similar observations apply
at t = 7 ms. At late times, the mixing fractions are very sensitive to the structure of the flow
resulting from the differences in order and grid resolution. The high-amplitude oscillations in
θ and ξ observed at late times indicate that the structures become more fragmented as the
resolution and order are increased.

The above results indicate that the mixing parameters exhibit different levels of sensitivity
to the grid resolution and to the order of reconstruction. Before reshock and immediately after
reshock, flow structures agree to a large extent, with peaks of similar shape and structures at
similar locations within the mixing layer. However, for intermediate and late times following
reshock, the development of mixing is significantly affected by the order of reconstruction and
grid resolution. Peaks now appear in different locations and have different shapes. In general,
the high-order, high-resolution simulations exhibit the most structures, with more pronounced
and localized peaks. By contrast, low-resolution, low-order simulations have fewer peaks that
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are spread over a larger portion of the mixing layer. This observation can again be explained
in terms of varying numerical diffusion. Simulations with low-order and low-resolution have
larger numerical dissipation, which results in more complete mixing and therefore in peaks with
higher amplitudes before reshock. Concomitantly, the large numerical diffusion suppresses the
formation of small-scale structures. Reshock imparts more uniform energy on the interface,
which combined with the stronger inverse cascade, leads to the formation of large-scale sym-
metric structures. These structures appear in the profiles as larger, uniform peaks. By contrast,
high-resolution, high-order simulations have smaller numerical diffusion, resulting in smaller
peaks prior to reshock. However, the small dissipation does not suppress the small-scale struc-
tures, which are then amplified by reshock, leading to the formation of additional small-scale
complex structures. This fragmented structure is reflected in the profiles as a complex series
of localized peaks. Note that due to the two-dimensional nature of the flow considered here,
the effects of resolution and order of reconstruction can be directly related to the effects of
numerical dissipation. In three-dimensional simulations, the additional mechanism of vortex
stretching exists and must be considered. The results presented here clearly and quantitatively
demonstrate that numerical dissipation effects are significant, as different characterizations of
mixing are possible depending on the grid resolution and order of reconstruction.

5.5 The effects on the mixing fractions

The effects of grid refinement and order of reconstruction on the production and mixing frac-
tions are presented in this section. The top row in Fig. 57 shows the time-evolution of the
production fractions Pt(t) and Pm(t). The same observations noted for 〈Xp〉 and Xp (〈X〉)
in Figs. 53 and 54 apply to Pt(t) and Pm(t). Specifically, the large differences observed for
〈Xp〉 at t = 6 ms, particularly in the regions outside the roll-ups where the difference is due
to the width of the diffusion layer, result in increased values of Pt as the resolution and order
of reconstruction are decreased. Diffusion is also central to understanding the large differences
observed after reshock, and to the fact that the results using third-order reconstruction at
low-resolutions are very different from the other results. The plot of Pm shows an interesting
trend: before reshock, the values corresponding to third-order reconstruction at low resolution
are the lowest, while after reshock the values corresponding to ninth-order reconstruction at
high-resolution are the lowest. Smaller values of Pm indicate that the two fluids are less mixed,
as less product is formed. Prior to reshock, the third-order results display roll-ups that are
less tight when compared to the fifth- and ninth-order results, resulting in overall decreased
product formation. Following reshock, the ninth-order results have the largest mixing layer
width, resulting in less overall product formation. Note that the values of Pt and Pm for high-
resolution, high-order simulations exhibit oscillations that are due to the change in the value
of h(t), as discussed above.

The bottom row of Fig. 57 shows the mixing fractions Ξ and Θ. As noted earlier, Ξ and
Θ quantify (numerical diffusion-induced) mixing. Although both quantities provide similar
physical insight into the mixedness of the fluids, the results obtained when comparing different
orders of reconstruction and different grid resolutions exhibit differences. First consider Ξ. The
ninth-order simulation at the highest resolution yields the lowest value of Ξ until shortly after
reshock when it begins to increase. This is due to the rapid decrease in Pm observed above.
The rapid increase corresponding to third-order reconstruction at coarse resolution is due to
the increase in Pt observed above. The plot indicates that for simulations using the same order
of reconstruction, Ξ decreases as the resolution increases. Now consider Θ, for which the lowest
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value is given by the fifth-order reconstruction at high resolution for times before reshock and
by third-order reconstruction at high resolution following reshock. Furthermore, note that
no clear trend exists when the grid resolution is varied. For third-order reconstruction, Θ
decreases as the grid resolution is increased, while for ninth-order reconstruction no such trend
is observed. These results suggest that global mixing is most sensitive to changes in the grid
resolution and in the order of reconstruction. Furthermore, the results indicate that it is
difficult to predict a priori how a change in resolution or order of reconstruction affects these
mixing quantities.

The results above indicate that integrated mixing fractions also depend significantly on the
order of reconstruction and grid resolution. The differences in the results can be attributed to
differences in the numerical dissipation. Low-order, low-resolution simulations have increased
numerical dissipation, resulting in greater overall mixing as measured by the production mixing
fractions Pt both before and after reshock. High-order, high-resolution simulations have smaller
numerical dissipation, resulting in lower values of the mixing fraction Pt. The maximum
production fraction Pm exhibits different behavior. Before reshock, the values of Pm are similar
for all simulations, consistent with similar widths of the mixing layer and similar structures as
the instability develops. Following reshock, the mixing layer width obtained from high-order,
high-resolution simulations is larger and causes the value of Pm (as measured across the large
mixing layer width) to decrease. High-order, high-resolution simulations having the largest
mixing layer widths exhibit the smallest values of Pm. This change in behavior following
reshock is reflected in the values of the mixing fraction Ξ. Prior to reshock, low-resolution,
low-order simulations exhibit larger values of Ξ, consistent with increased overall mixing due
to the larger numerical dissipation. However, following reshock, Ξ is not clearly correlated with
the resolution and order of reconstruction. Similar mechanisms can also explain the values of
the molecular mixing fraction Θ, which does not show an identifiable correlation with the order
of reconstruction and resolution. In summary, the results show that the increased numerical
dissipation observed in low-resolution, low-order simulations affects mixing as measured by
the mixing fractions. In particular, the mixing fractions quantify mixing across the entire
layer, and therefore the differences in width affect the mixing fractions in ways that cannot be
predicted a priori easily. For this reason, mixing fractions must be considered in the context
of other quantities such as the mixing layer width, and do not provide direct characterizations
of the numerical mechanisms in the algorithm. This is in contrast to the mixing layer width,
which correlates very strongly with the numerical dissipation.

5.6 The effects on the spectra

An analysis of the effects of grid refinement and of order of reconstruction on spectra is pre-
sented here. As the number of grid points increases, the range of scales resolved increases and,
therefore, the tails of the spectra become longer. Also shown are plots of the ratio of each
quantity to the value obtained from the ninth-order simulation on the fine grid (the ratio is
shown only to the largest value of k obtained from the third-order, coarse grid simulation).

Figure 58 shows a comparison of the fluctuating kinetic energy spectrum E(k, t). At all
times considered, differences among all results are apparent across all orders of reconstruction
and grid resolutions. This difference in energy becomes more apparent at late time (t = 18
ms) when all of the low-wavenumber modes in the spectrum have been damped out. The
levels of energy observed in the fifth-order simulation at fine resolution are similar to the
energy observed in the ninth-order simulation at medium resolution. This provides further
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evidence that doubling the resolution gives qualitatively similar results as increasing the order
of reconstruction. At intermediate and small scales, the spectra become steeper as the order
increases. At late times, the ninth-order simulation on the finest grid has the lowest energy
content in the largest scales and the most energy content in the intermediate scales. Figure
59 shows the ratio of the fluctuating kinetic energy spectrum from the simulations to the
spectrum obtained from the ninth-order simulation on the fine grid. Large differences exist at
t = 6 ms, with the ratios oscillating about unity. As time progresses, the oscillations damp out
and it becomes clear that the energy content from the ninth-order simulation is the largest.
At t = 18 ms and at large wavenumbers, the energy spectrum from the third-order simulation
on the coarse grid is larger than the energy spectrum from the ninth-order simulations. This
is due to aliasing, which causes the energy to accumulate at large wavenumbers as the Nyquist
wavenumber (187) is approached [43, 23].

Figure 60 shows a comparison of the fluctuating enstrophy spectrum Eω′′ω′′(k, t), which
is extremely sensitive to both the order and the resolution at all times. In particular, as the
resolution and the order of reconstruction increase, the fluctuating enstrophy content of both
the small and large scales increases. The fluctuating enstrophy spectrum from the ninth-order
fine grid simulation differs from that corresponding to the third-order coarse grid simulation by
an order of magnitude in the large scales and by several orders of magnitude in the intermediate
and small scales. The plots in § 5.8 show that the vorticity corresponding to higher resolutions
and higher orders increases in magnitude and is more localized, which is also reflected in the
fluctuating enstrophy spectrum. At t = 18 ms, all of the oscillatory modes have been damped
out and the spectrum begins decaying. The lower order and lower resolution spectra are much
steeper than those at higher order and higher resolution. As the vorticity is constructed from
the difference of two velocity gradients, its high-frequency components are more sensitive to
numerical damping than are primitive fields such as the velocity. This sensitivity is amplified
quadratically as the enstrophy is proportional to the square of the vorticity. Figure 61 shows
the ratio of the fluctuating enstrophy spectrum from the simulations to the spectrum obtained
from the ninth-order simulation on the fine grid. The ratio is always below unity for all times
and for all simulations, indicating that the fluctuating enstrophy spectrum is very sensitive to
the order of reconstruction and to the grid resolution. The relationship between the fluctuating
enstrophy spectrum and the numerical dissipation present in the algorithm is a subject of future
study.

Figure 62 shows the density variance spectrum Eρ′ρ′(k, t). The density variance spectra
are very similar for small wavenumbers, but decrease steeply and rapidly as the wavenumber
increases due to the numerical dissipation (which smooths out the fluctuations). As the order
is increased or the grid resolution is increased, the numerical dissipation is decreased and the
smoothing effects occur at progressively larger wavenumbers. Therefore, the density variance
spectrum provides a useful measure of the effects of the numerical dissipation on the flow. The
lower order and lower resolution spectra are steeper than those at higher order and higher res-
olution. Note that the density variance spectrum from the ninth-order simulation on the finest
grid apparently exhibits an inertial subrange over slightly more than a decade in wavenumbers
at t = 12 and 18 ms. Figure 63 shows the ratio of the density variance spectrum from the
simulations to the spectrum obtained from the ninth-order simulation on the fine grid. At
early times, large fluctuations exist near unity indicating a non-uniform modal distribution
of the density variance. At later times, as the apparent inertial subrange develops, the ratio
approaches unity, decreasing rapidly as the cutoff wavenumber is approached.

Finally, Fig. 64 shows the pressure variance spectrum Ep′p′(k, t). As the resolution in-
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creases, the pressure variance spectrum exhibits differences even in the low-wavenumber range,
with higher resolutions and higher orders resulting in increased energy. This is due to the fact
that the pressure is obtained from the energy equation with increased amounts of energy de-
posited on the interface as the resolution and order are increased. The steep decline in the
spectrum is also due to the numerical dissipation, which smooths out large-wavenumber fluc-
tuations. The lower order and lower resolution spectra are steeper than those at higher order
and higher resolution. Note that the pressure variance spectrum from the ninth-order simula-
tion on the finest grid apparently exhibits an inertial subrange over approximately a decade
in wavenumbers at t = 12 and 18 ms. Figure 65 shows the ratio of the pressure variance
spectrum from the simulations to the spectrum obtained from the ninth-order simulation on
the fine grid. The figure at t = 6 ms indicates that increased energy is observed for the
simulation on the medium grid at high wavenumbers. In particular, a closer examination of
the corresponding plot in Fig. 64 shows that there is a sudden increase in pressure variance
similar to that observed from aliasing. This result is unexpected, and it is not clear what
mechanism is responsible for this. It is noteworthy that this phenomenon is observed in all
of the simulations. In particular, the ninth-order simulation on the fine grid also exhibits an
increase in the pressure variance in the large wavenumbers. However, the increase occurs at
larger wavenumbers than for the ninth-order simulation on the medium grid.

As shown above, the effects of grid resolution and order of reconstruction on the spectra
can be understood based on the presence of small-scale features and the intrinsic numerical dis-
sipation of the method. The difference in magnitude observed in the kinetic energy spectrum
across different resolutions and orders of reconstruction is a direct consequence of the presence
of small-scale flow features. High-resolution, high-order simulations support small-scale fea-
tures resulting in larger fluctuations. These fluctuations are further amplified during reshock
and yield energy spectra that are similar in shape but much larger in magnitude. Consider
instead the density variance spectrum: all curves overlap for a portion of the spectrum, but
show a steep decline depending on the resolution and order of the method. This is a direct
consequence of the numerical dissipation damping the fluctuations beyond a certain critical
scale. Comparing simulations with different orders of flux reconstruction and different grid
resolutions for the enstrophy shows both the effects of small-scale structures and the effects
of numerical dissipation. Similarly, the pressure variance spectrum also shows a dependence
on both mechanisms. As observed from the ratio of each spectrum from the simulations with
different orders and resolutions to the spectrum obtained from the ninth-order simulation on
the fine grid, there is no apparent ‘convergence’ of the spectra: this indicates that quantities
sensitive to the small-scale structure of the flow do not generally exhibit ‘convergence’ while
quantities determined primarily by the large-scale structures appear to be ‘converged’ at suf-
ficiently high order of reconstruction and grid resolution, i.e., the mixing layer amplitude or
width (as shown in § 5.2).

5.7 The effects on the statistics

An investigation of the effects of grid refinement and order of reconstruction on the statistics
(i.e., wavenumber-integrated energy spectra) is presented here. Figure 66 shows the fluctuating
kinetic energy and its components. As the order of reconstruction and resolution are increased,
the overall energy increases before reshock. However, this is no longer the case following
reshock. For example, consider Eu′′u′′(t). The ninth-order result at coarse resolution has
the lowest energy, which can be explained by recalling that the mixing layer width obtained
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from the ninth-order simulation is larger than that obtained from the third-order simulation,
resulting in less overall energy. Also note that Ev′′v′′(t) is much more sensitive to the spatial
resolution and to the order of reconstruction than Eu′′u′′(t), both before and after reshock
(particularly at late times). Following reshock, the lowest resolution simulations are no longer
the simulations with the least energy content: this is again due to the reduced mixing layer
width observed for coarser simulations, which yields increased levels of energy.

The differences become very significant as the grid resolution and order of spatial recon-
struction are varied when the fluctuating enstrophy Eω′′ω′′(t), shown in Fig. 66, is considered.
First, note that the fluctuating enstrophy increases as the order and spatial resolution increases.
The fluctuating enstrophy also increases as the grid resolution is increased. Furthermore, note
that the fluctuating enstrophies from simulations with increased grid resolution or higher order
of reconstruction are very similar. It is interesting to note that the difference in enstrophies is
apparent both before and after reshock, with the fluctuating enstrophy from the ninth-order
fine grid simulation differing from that obtained from the third-order coarse grid simulation by
an order of magnitude. This behavior can be explained by noting that the enstrophy measures
the squared fluctuations of vorticity. Vorticity fluctuations are responsible for the dissipa-
tion of kinetic energy and the transfer of energy to smaller scales. Hence, a larger enstrophy
from simulations with higher grid resolutions and order of reconstruction is an indication of
the formation of additional small-scale structures. This is consistent with a reduced numerical
dissipation in simulations with higher order of spatial reconstruction and higher grid resolution.

The density variance Eρ′ρ′(t) shown in Fig. 66 exhibits agreement once the order and grid
resolution are sufficiently high. This result is consistent with the previous observation that the
density variance spectrum does not significantly change as a function of grid resolution and
order of reconstruction, with the exception of a steep decline at large wavenumbers. Contribu-
tions from the small scales (large wavenumbers) are not heavily weighted in the computations
of statistics, which is consistent with the small changes. The density variance is rapidly damped
in the third-order, coarse and medium grid simulations. The pressure variance Ep′p′(t) shown
in Fig. 66 exhibits little sensitivity to changes in the order of reconstruction and grid resolution.

The investigation presented here shows that statistics are affected differently by changes in
order of reconstruction and grid resolution. The fluctuating enstrophy shows the most variation
and indicates that the higher numerical dissipation associated with low-order, low-resolution
simulations significantly decreases the fluctuating enstrophy. This result is also consistent with
the large variations observed in the fluctuating enstrophy spectra where a cascade to larger
wavenumbers was observed in high-order, high-resolution simulations. The cascade causes
the statistics to have larger values, as an increased number of modes with similar energy is
obtained. Increased values of the enstrophy are consistent with the formation of small-scale
structures observed in simulations performed using higher grid resolution and higher order
of spatial reconstruction. The fluctuating kinetic energy and pressure variance exhibit little
variation, as the differences in spectra observed earlier are not reflected in the statistics. The
periodic component of the fluctuating kinetic energy shows variations following reshock due to
the presence of small-scale disordered flow structures in high-order, high-resolution simulations.

5.8 Temporal progression of the density and vorticity fields

Presented here is the time-evolution of the density and vorticity fields at intervals of 1 ms in
the single-mode, two-dimensional Richtmyer-Meshkov instability with reshock obtained from
WENO simulations with third-, fifth-, and ninth-order of reconstruction and grid resolutions of
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128, 256, 512 points per initial perturbation wavelength. The following convention is adopted
in the presentation of the results. The top, middle, and bottom rows show the results of the
ninth-, fifth-, and third-order simulations, respectively. The left, middle, and right columns
display results obtained with increasing spatial resolution. The purpose of this section is to
qualitatively illustrate how the evolution of the instability changes as the numerical order of
flux reconstruction and the grid resolution are varied. The figures also aid in interpreting the
results in previous sections.

At early times, the interface is more diffused for the lower order and lower resolution
simulations. As time evolves, a qualitative correspondence in both the density and vorticity
occurs between the simulations on the diagonal, i.e., results obtained using a (2n− 1)-th order
method with n = 2, 3 and N grid points per initial perturbation wavelength are similar to
those obtained using a (2n− 1)-th order method with n = 3, 5 and N/2 grid points per initial
perturbation wavelength, respectively. The higher-order and finer grid results show sharper,
smaller-scale features with well-defined roll-ups (more concentrated vortex cores), as well as
thinner diffusion layers. The vortex cores are larger in the lower order and lower resolution
simulations.

The amplitudes from the higher order and higher resolution simulations are slightly larger
than those from the lower order and lower resolution simulations before reshock. After reshock,
the difference in amplitude increases due to the mechanisms described in § 5. The third-order
simulations remain highly diffuse for all grid resolutions, even at late times following reshock.
As shown in the figures with t ≥ 7 ms, the third-order simulations retain significant coherency
and symmetry following reshock. The third-order results are characteristic of simulations with a
high degree of numerical diffusion, as well as simulations that are under-resolved. By contrast,
simulations performed using fifth- and ninth-order spatial reconstruction show breaking of
symmetry. The breaking of symmetry, which has not been reported in other simulations with
reshock using formally lower order methods (see [89, 28]), can be attributed to numerical
instabilities that are not damped by the numerical dissipation in the method.

By t = 6 ms, the medium grid ninth-order simulation exhibits additional small-scale struc-
ture within the roll-ups. This additional structure was also reported by several investigators
using the piecewise-parabolic method (PPM) [128, 101], and is apparently a manifestation of
a physical process observed in experiments [51, 97, 29]. By contrast, the fine grid ninth-order
simulation begins to show asymmetrical and fragmented structure within the roll-ups, as well
as on the interface. Such structure was also observed in ninth- and eleventh-order numerical
simulations at high resolutions conducted at Brown University; it is speculated that as the
roll-ups form, the interface separating the two gases is stretched increasingly thinner and the
differences in flow velocities across the interface, along with the numerical perturbations, cause
the formation of an instability similar to the Kelvin-Helmholtz instability [33]. It is believed
that this is a manifestation of a numerical instability due to the small numerical diffusion
that is unable to provide sufficient regularization of the Euler equations as the grid Reynolds
number [118, 100]

Re∆x =
cs ∆x
νnum

(266)

increases (where νnum is some parameterization of the numerical viscosity of the method and cs
is the speed of sound). It would be of interest to perform a grid convergence study using explicit
molecular dissipation and diffusion to determine whether this fragmentation persists. Following
reshock, the ninth-order simulations exhibit the most small-scale, disordered structure with
significant fragmentation of the density and of the vorticity, and are most reminiscent of the
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experimental PLIF images in Collins and Jacobs. By contrast, the lower order and lower
resolution simulations continue to exhibit relatively ordered structure, even following reshock.

The study presented here can also be used to confirm and substantiate the mixing analysis
performed in the previous section, as well as the study of the effects of spatial resolution and
order of reconstruction in this section. The mass transfer measured by the averaged mole
fraction 〈X〉, the degree of mixedness as measured by the reaction mole fraction 〈Xp〉, and
the presence of large unmixed regions measured by Xp (〈X〉) can be qualitatively confirmed
by considering the density plots. Furthermore, the qualitative differences discussed as the
resolution and order of reconstruction are changed can also be confirmed by comparing to
the density plots presented below. The structure of the vorticity qualitatively confirms the
formation of large- or small-scale structures and provides indirect support to the analysis
of the time-evolution of the spectra. The difference in vorticity structures observed as the
resolution and the order of reconstruction are changed is also consistent with two-dimensional
turbulence phenomenology. As the resolution is increased and the order of reconstruction is
increased, the inverse cascade also decreases, resulting in the formation of more fragmented
and smaller-scale structures. By contrast, as the resolution is decreased the inverse cascade
is stronger, leading to the formation of large vortical structures. Therefore, the consistency
between the mixing analysis and the density plots, and between the spectral analysis and the
vorticity plots indicates that the quantities considered in the present investigation provide a
physically useful characterization of the mixing process.
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Figure 51: The total circulation Γ = Γ+ + Γ− (left) and absolute value of the circulation |Γ|
(right), when the order of reconstruction and the grid resolution are varied.
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Figure 52: Comparison of the mole fraction profile 〈X〉 at t = 6, 7, 12, 18 ms when the order
of reconstruction and the grid resolution are varied.
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Figure 53: Comparison of the product mole fraction profile 〈Xp〉 at t = 6, 7, 12, 18 ms when
the order of reconstruction and the grid resolution are varied.
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Figure 54: Comparison of the product mole fraction profile Xp(〈X〉) at t = 6, 7, 12, 18 ms when
the order of reconstruction and the grid resolution are varied.
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Figure 55: Comparison of the molecular mixing fraction θ at t = 6, 7, 12, 18 ms when the order
of reconstruction and the grid resolution are varied.
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Figure 56: Comparison of the molecular mixing fraction ξ at t = 6, 7, 12, 18 ms when the order
of reconstruction and the grid resolution are varied.
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Figure 57: Comparison of the mixing fractions Pt, Pm, Ξ, and Θ when the order of reconstruc-
tion and the grid resolution are varied.
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Figure 58: Comparison of the fluctuating kinetic energy spectrum E(k, t) at t = 6, 7, 12, 18 ms
when the order of reconstruction and the grid resolution are varied.
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Figure 59: Ratio of the fluctuating kinetic energy spectrum from the simulations to the spec-
trum from the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of
reconstruction and the grid resolution are varied.
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Figure 60: Comparison of the fluctuating enstrophy spectrum Eω′′ω′′(k, t) at t = 6, 7, 12, 18 ms
when the order of reconstruction and the grid resolution are varied.
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Figure 61: Ratio of the fluctuating enstrophy spectrum from the simulations to the spectrum
from the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of
reconstruction and the grid resolution are varied.
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Figure 62: Comparison of the density variance spectrum Eρ′ρ′(k, t) at t = 6, 7, 12, 18 ms when
the order of reconstruction and the grid resolution are varied.

154



t = 6 ms t = 7 ms

0 20 40 60 80 100

0

1

2

3

4

k

9 medium
9 coarse
5 fine
5 medium
5 coarse
3 fine
3 medium
3 coarse

0 20 40 60 80 100

−1

0

1

2

3

4

k

9 medium
9 coarse
5 fine
5 medium
5 coarse
3 fine
3 medium
3 coarse

t = 12 ms t = 18 ms

0 20 40 60 80 100
0

1

2

3

4

5

k

9 medium
9 coarse
5 fine
5 medium
5 coarse
3 fine
3 medium
3 coarse

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5

4

k

9 medium
9 coarse
5 fine
5 medium
5 coarse
3 fine
3 medium
3 coarse

Figure 63: Ratio of the density variance spectrum from the simulations to the spectrum from
the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of reconstruction
and the grid resolution are varied.
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Figure 64: Comparison of the pressure variance spectrum Ep′p′(k, t) at t = 6, 7, 12, 18 ms when
the order of reconstruction and the grid resolution are varied.
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Figure 65: Ratio of the pressure variance spectrum from the simulations to the spectrum from
the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of reconstruction
and the grid resolution are varied.
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Figure 66: Comparison of Eu′′u′′(t), Ev′′v′′(t), E(t), Eω′′ω′′(t), Eρ′ρ′(t), and Ep′p′(t) when the
order of reconstruction and the grid resolution are varied.
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Figure 67: Density and vorticity at t = 1 ms.
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Figure 68: Density and vorticity at t = 2 ms.
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Figure 69: Density and vorticity at t = 3 ms.
161



Coarse Medium Fine

ni
nt

h-
or

de
r

fif
th

-o
rd

er
th

ir
d-

or
de

r

Figure 70: Density and vorticity at t = 4 ms.
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Figure 71: Density and vorticity at t = 5 ms.
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Figure 72: Density and vorticity at t = 6 ms.
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Figure 73: Density and vorticity at t = 7 ms.
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Figure 74: Density and vorticity at t = 8 ms.
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Figure 75: Density and vorticity at t = 9 ms.
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Figure 76: Density and vorticity at t = 10 ms.
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Figure 77: Density and vorticity at t = 11 ms.
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Figure 78: Density and vorticity at t = 12 ms.
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Figure 79: Density and vorticity at t = 13 ms.
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Figure 80: Density and vorticity at t = 14 ms.
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Figure 81: Density and vorticity at t = 15 ms.
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Figure 82: Density and vorticity at t = 16 ms.

174



Coarse Medium Fine

ni
nt

h-
or

de
r

fif
th

-o
rd

er
th

ir
d-

or
de

r

Figure 83: Density and vorticity at t = 17 ms.
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Figure 84: Density and vorticity at t = 18 ms.
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Order Coarse grid Medium grid Fine grid
9 0.4 2.3 20.7
5 0.2 1.0 9.5
3 0.17 0.8 7.1

Table 4: Ratio of CPU times for advancing the simulations by ∆t = 0.1 ms compared with the
time needed for the fifth-order simulation at medium resolution.

5.9 Computational scaling of the simulations

The simulations presented in this report were conducted on the Blue Pacific computer at the
Lawrence Livermore National Laboratory. For each case, 32 nodes were used with a total of 128
processors. Each simulation was carried out to a time of at least t = 18 ms. The CPU times
required to advance the simulation between t = 12.5 ms and t = 12.6 ms were compared to the
time required for the fifth-order medium grid simulation. The late times are chosen because at
earlier times the domain increases due to the adaptive domain feature of the HOPE code [68].
The ratio of the CPU times for the simulations and the time needed for the fifth-order medium
grid case are presented in Table 4. Increasing the order of WENO reconstruction requires twice
the computational time, whereas doubling the grid resolution requires five to eight times more
computational time.

The analysis presented here suggests that similar results are observed when either the order
of reconstruction was increased, keeping the grid resolution fixed, or the resolution was doubled,
keeping the order of reconstruction fixed. The CPU times suggest that the use of high-order
methods is less computationally expensive than increasing the grid resolution. Thus, the use
of high-order methods can lead to a significant advantage in three-dimensional simulations of
complex hydrodynamic flows.
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6 Summary and conclusions

The high-resolution weighted essentially non-oscillatory (WENO) shock-capturing method im-
plemented in the HOPE code was applied to investigate the classical two-dimensional, single-
mode Richtmyer-Meshkov instability in planar geometry with reshock. The current simula-
tions were conducted in the spirit of monotone-integrated large-eddy simulation (MILES), i.e.,
molecular dissipation and diffusion terms in the governing equations were neglected. The initial
conditions and computational domain approximate the Mach 1.21 air(acetone)/SF6 shock tube
experiment of Collins and Jacobs [29]. Only the test section of the shock tube was simulated,
so that the reflected rarefaction wave present in the experiment was not explicitly captured in
the simulations. A single value of the adiabatic exponent was used, as additional algorithm
development is required for a robust two-fluid implementation in the HOPE code. Future sim-
ulations with explicit molecular dissipation and with subgrid-scale models are also planned to
more accurately model the flow physics. Simulations with eleventh-order reconstruction, and
with a hybrid WENO/central difference method are also envisaged. Three-dimensional sim-
ulations and analysis of the classical multi-mode Richtmyer-Meshkov instability with reshock
are the subject of Part 4 of this report [70].

The simulations were performed in two spatial dimensions using the Euler equations for
the following reasons:

1. the initial conditions based on the Collins-Jacobs shock tube experiment are effectively
two-dimensional, so that a two-dimensional simulation is expected to capture the essential
flow features prior to reshock;

2. it is possible to achieve much higher spatial resolution in two dimensions than in three
dimensions, thereby affording highly-resolved simulations that are less affected by nu-
merical diffusion;

3. two-dimensional simulations allow the study of the breakup of structures and the transfer
of energy to small scales in the absence of the vortex stretching mechanism, and facilitate
comparisons to previous two-dimensional simulations and to the predictions of linear and
nonlinear amplitude growth models;

4. it is computationally challenging to perform three-dimensional simulations with explicit
molecular dissipation and diffusion that capture all of the spatio-temporal scales present
in a complex flow, particularly following reshock, while sharply capturing the shock.

The complex issues concerning the consequences of the reduction of the accuracy of nu-
merical solutions of nonlinear problems to first-order upon shock passage [77, 34, 24, 25] are
not addressed in the present work. In this sense, the spatial truncation error of a higher-order
method can be parameterized in terms of the grid resolution ∆x by

ε(r,∆x) = c∆x+ cr (∆x)r , (267)

where c and cr are constants dependent upon the flow and on the specific numerical scheme,
and r is the spatial order of accuracy of the scheme (n.b., the error increases with increasing
shock strength). The first term on the right side is the error due to the shock, and the second
term on the right is the error in a smooth flow region. Note that only those regions in the
computational domain where information propagates through a shock are susceptible to such
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shock-capturing errors. While these issues are common to all shock-capturing methods (irre-
spective of their formal order of accuracy) when the initial shock passes through a perturbed
interface to generate the Richtmyer-Meshkov instability and when the reshock of the evolving
interface occurs, it is quite apparent from the present investigation that the properties of the
relatively smooth and nearly-incompressible flow following reshock are strongly affected by the
order of the method. This topic deserves further investigation, analysis, and discussion of its
physical implications.

Numerical simulations were performed using third-, fifth-, and ninth-order spatial flux re-
construction and uniform spatial grid resolution with 128, 256, and 512 points per initial
perturbation wavelength. To our knowledge, the present work represents the first comprehen-
sive application of the WENO method to the computational study of the classical Richtmyer-
Meshkov instability with reshock. It should be noted that a detailed numerical study of the
single-mode, ‘impulsive Richtmyer-Meshkov’ instability experiment with reshock of Jacobs,
Jones and Niederhaus [54, 97, 98] was performed by Kotelnikov and Zabusky [63] and Kotel-
nikov, Ray and Zabusky [62] using the vortex-in-cell method and the contour advection semi-
Lagrangian method (n.b., Kotelnikov, Ray and Zabusky [62] also simulated the Jacobs et al.
[53] and Rightley et al. [107] Mach 1.2 experiment with reshock using a Godunov method,
and compared the results with their incompressible results). Furthermore, to our knowledge,
the present work is the first systematic investigation of the effects of both order of reconstruc-
tion and grid resolution in a given high-resolution method, as applied to this instability. The
comparison of results obtained with different grid resolutions and reconstructions is similar
in spirit to the work of Cook, Cabot and Greenough [30], in which a centered ENO scheme,
a higher-order Godunov method, and a filtered spectral/compact difference method (applied
to the Shu-Osher problem, Collins-Jacobs experiment prior to reshock, and Taylor-Green vor-
tex) were compared. The comparison of results obtained with fifth- and ninth-order WENO
reconstruction in the present study showed that similar structures can be obtained using the
higher-order reconstruction with one-half of the grid resolution in each direction—a similar
conclusion obtained previously for the Rayleigh-Taylor instability [114]. This result can be
explained using (267) as follows. The error can be decreased by halving ∆x or by doubling
r. Let ε(r,∆x) in Eq. (267) represent the error for a given ∆x and r. Let ∆x′ = ∆x/2 and
r′ = 2r (corresponding to doubling the grid resolution and doubling the order). Doubling the
grid resolution gives

ε(r,∆x′) = c∆x′ + cr
(
∆x′

)r (268)

= c
∆x
2

+ cr (∆x)r
(

1
2

)r
,

while doubling the order of spatial reconstruction gives

ε(r′,∆x) = c∆x+ cr′ (∆x)
r′ (269)

= c∆x+ cr′ (∆x)
r (∆x)r .

If cr′ ∼ cr then, comparing the truncation errors in Eqs. (268) and (269) indicates that
doubling the order of reconstruction yields an overall smaller truncation error in the smooth
region of the flow as ∆x < 1/2. As much of the instability evolution occurs in regions far
away from the shock, this explains why doubling the order of reconstruction gives comparable
results to doubling the grid resolution. Note that near the shock, doubling the grid resolution
results in a smaller error than doubling the order of reconstruction. This reflects the trade-off
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between the formal design order of a scheme and spatial resolution, which becomes even more
computationally significant in three spatial dimensions. In the present study, it was found that
doubling the grid resolution incurred an approximately nine-fold increase in computational
cost; by contrast, increasing the order of spatial reconstruction incurred an approximately
two-fold increase in cost.

While the numerical simulations presented here have several limitations (including the
consideration of only the shock tube test section, and two-dimensional flow), the excellent
agreement with experimental data prior to reshock provides encouragement for the continued
use of the WENO method for the quantitative investigation of complex hydrodynamic flows
induced by shocks. In particular, Part 3 [69] and Part 4 [70] of this report will consider
the oblique single-mode Richtmyer-Meshkov instability in two dimensions and the multi-mode
Richtmyer-Meshkov instability with reshock in three dimensions, respectively. Presented below
is a summary of the principal findings in each of the three main subjects of investigation in
the present report.

6.1 Mixing layer growth

A comprehensive analysis of the instability evolution was presented in the first part of the report
in § 2 and 3, including: (1) a comparison of the density from a fifth- and ninth-order WENO
simulation (using a uniform grid resolution of 256 points per initial perturbation wavelength)
to experimental PLIF images; (2) a comparison of the mixing layer growth before and after
reshock with the predictions of analytical, semi-analytical, and phenomenological amplitude
(mixing layer) growth models, and; (3) an investigation of the circulation deposition. The
simulations were performed up to time t = 18 ms–much later than reported in the Collins and
Jacobs [29] experiment (t = 11 ms).

6.1.1 Comparison of density and experimental PLIF images

The comparison of density and experimental PLIF images shows that it is possible to achieve
very good agreement between a two-dimensional, high-resolution, shock-capturing simulation
with high-order flux reconstruction and density PLIF images from a Richtmyer-Meshkov ex-
periment with a two-dimensional initial perturbation before reshock when three-dimensional
effects are not very significant. The comparison of densities from the simulation with fifth-
and ninth-order reconstruction demonstrates that higher-order reconstruction better captures
secondary instabilities, the roll-ups appear tighter and sharper, and more fine-scale structures
are present. Following reshock, the experiment and simulations show distinctively different
flow structures. This is due to the absence of the initial rarefaction wave and the increased
importance of three-dimensional effects (including vortex-stretching) that are not captured in
the two-dimensional simulations. As a result, the density fields obtained from the simulation
and the corrected density PLIF images from the experiment lag in time by ≈ 1 ms. Simulated
density Schlieren images were also presented to illustrate the complex wave interactions oc-
curring during the reshock process, i.e., the reflected and transmitted waves, and the focusing
effects that are very difficult to image experimentally. At late times, the densities from the
simulations show the formation of large-scale structures consistent with the inverse cascade of
kinetic energy from small scales to larger scales observed in other two-dimensional simulations.
The comparison of fifth- and ninth-order simulations shows that finer asymmetric structures
appear in the higher-order simulations, consistent with reduced numerical dissipation and a
reduced inverse cascade.
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6.1.2 Comparison to the predictions of linear and nonlinear models prior to
reshock

The amplitude growth prior to reshock was compared to the experimental data and to the
predictions of various classical and recent models for amplitude growth in the linear and
weakly-nonlinear regimes. Excellent quantitative agreement was found between the ampli-
tude obtained from the fifth-order simulation on the medium resolution (256 points per initial
perturbation wavelength) grid and the experimental data points prior to reshock. As expected,
the simulation data was also in excellent agreement with linear models at early times t satisfy-
ing kv0t . 1, where v0 is given in Eq. (12). At later times, the simulation data was shown to
be in best agreement with the predictions of the Zhang-Sohn Padé amplitude growth model.
Thus, this component of the present work provides further validation of the HOPE code and
of the WENO method against experimental data corresponding to the Richtmyer-Meshkov
instability.

6.1.3 Comparison to the predictions of models using parameters determined from
experimental and numerical simulation data

The experimental parameters from the Collins and Jacobs experiments and the parameters
from the present simulation were used to compute the terms in the nonlinear mixing layer
growth models. It was shown that small variations in these parameters have a dramatic effect
on the predictions of nonlinear amplitude growth models. In particular, it was shown that
when experimental data is used, the prediction of the Sadot model is in best agreement with
the experimental and simulation mixing layer width; by contrast when the simulation data
is used, the prediction of the Zhang-Sohn model is in best agreement. Computation of the
root-mean-square of the difference between the simulation results and the model predictions
indicates that: when the model parameters are obtained from experimental data, the root-
mean-square is minimized with the Sadot model; when the model parameters are obtained
from the simulation data, the Zhang-Sohn model minimizes the root-mean-square error.

6.1.4 Comparison to the predictions of models accounting for reshock

Following reshock, it was shown that the instability evolution did not agree with the experi-
mental PLIF images, as the rarefaction wave and three-dimensional effects were not accounted
for in the numerical simulation. The absence of the reflected rarefaction wave allows a com-
parison of the mixing layer amplitude growth following reshock from the numerical simulation
with the predictions of the Mikaelian [87] and Brouillette-Sturtevant [21] post-reshock growth
models. The simulation data was shown to be consistent with the linear-in-time growth pre-
dicted by the Mikaelian model immediately following reshock. The Brouillette-Sturtevant
model also predicts a linear growth, but with a smaller slope than the Mikaelian model. At
later times following reshock, the simulation data lies between the predictions of the Mikaelian
and Brouillette-Sturtevant models. As expected, the amplitudes turn over and grow at a slower
rate at sufficiently large times following reshock. In general, it is clear that additional exper-
imental data is needed to provide a more complete validation, especially following reshock of
the evolving mixing layer.
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6.1.5 Baroclinic deposition of circulation on the interface

To quantify the driving mechanism for the evolution of the Richtmyer-Meshkov instability, the
circulation deposited on the interface by the shock was computed. Immediately following the
first interaction with the shock, the circulation has a sinusoidal distribution on the interface.
Integrating over an entire period yields zero total circulation, as expected. The positive and
negative components of the circulation show an increase following the shock interaction, con-
sistent with secondary baroclinic vorticity deposition. This secondary instability is responsible
for the complex structures observed in the roll-ups of the Richtmyer-Meshkov instability and
for additional vorticity deposition on the interface. Reshock causes the deposition of additional
vorticity of opposite sign, which is further amplified by the secondary baroclinic vorticity de-
position. Following the interaction with the reflected rarefaction wave, complex structures
form and symmetry breaks, resulting in large discrepancies between the positive and negative
vorticity: this results in a non-zero total circulation.

6.2 Local and global mixing analysis

The second part of the report in § 4 presented an extensive investigation of mixing before
and after reshock including the time-evolution of the: (1) volume fraction and mixing fraction
profiles; (2) mixing fractions and volume-averaged quantities; (3) fluctuating kinetic energy,
fluctuating enstrophy, density variance, and pressure variance spectra, and; (4) statistics. In
addition, the effects of reflected waves (outflow and reflecting boundary conditions) on these
quantities were also investigated.

6.2.1 Volume fraction and mixing fraction profiles

The analysis included an examination of the profiles of mole fractions and other quantities
characterizing the mixing over the extent of the layer as a function of time. Many of these
quantities were adopted from previous analysis of Rayleigh-Taylor mixing, suitably modified for
their application to shocked compressible flow. The profiles were recentered by the location of
the midpoint of the interface and rescaled by the total mixing layer width in order to investigate
the dynamics of mixing within the layer and the apparent collapse of the profiles at late times.
The observed characteristics of the mixing averaged over the direction of shock propagation
were qualitatively explained using the product mole fraction profiles, volume fraction profiles,
and other related quantities.

The analysis indicates that the mole fraction profile 〈X〉 is appropriate to measure the
evolving redistribution of mass within the mixing layer caused by the creation of bubble-
and spike-like structures. In particular, prior to reshock the principal mechanisms affecting
the mole fraction are the creation of a single, dominant bubble and spike; following reshock,
the principal mechanism is the excitation of many smaller bubbles and spikes contributing to
the highly-irregular, topologically-complex structure observed. These additional bubbles and
spikes are responsible for elongating the mixing layer, resulting in a distribution of mass that is
nearly uniformly increasing across the layer from the air(acetone) to the SF6 side. The analysis
also suggests that 〈Xp〉 and Xp (〈X〉) are necessary to understand how well the mass is mixed
across the layer. Large peaks are observed at early times due to the diffusive initial conditions;
as the spike and bubble evolve through the linear phase, the two peaks separate and as the
roll-ups form, additional peaks are observed corresponding to well-mixed fluids within the roll-
ups; following reshock, several smaller roll-ups form, contributing to a larger number of peaks,
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indicating large regions with localized well-mixed air and SF6; at late times the formation of
large-scale structures contribute to the appearance of large, wide peaks with smaller peaks of
well-mixed fluid. This late-time behavior is consistent with the inverse cascade of small-scale
velocity fluctuations to larger scales observed in two-dimensional turbulent flows. Finally, the
mixing fractions θ and ξ provide similar characterizations of the mixing process, showing large
areas of localized mixing within the layer at late times.

6.2.2 Time-evolution of mixing fractions and volume-averaged quantities

This analysis included integrating 〈Xp〉 and Xp (〈X〉) over the mixing layer to obtain the
production fractions Pt and Pm, respectively, and the mixing fraction Ξ. The molecular mixing
fraction Θ was also considered, with a behavior qualitatively similar to that of of Ξ. The
evolution of Pt and Pm prior to reshock is dominated by the formation of the bubble of
unmixed fluid, which causes Pm to decrease and Ξ to increase. Following reshock the layer
is compressed, causing a well-mixed region to form, as shown by the formation of a sharply-
peaked value in the mixing fractions. This well-mixed region is characterized by the rapid
production of small-scale structures by the reshock process, as shown earlier. Subsequently,
the mixing layer undergoes a rapid growth as the inversion occurs, causing the overall mixing
to decrease rapidly over a time interval of approximately two milliseconds.

6.2.3 Time-evolution of the fluctuating kinetic energy, fluctuating enstrophy, den-
sity variance, and pressure variance spectra

The investigation of the spectral evolution both prior to and following reshock provides a
spectral quantification of the complex features observed in the density and Schlieren images. In
particular, the investigation of spectra showed that a fairly broad range of scales already exists
prior to reshock, despite the fact that the roll-up from a single-mode initial perturbation is
considered. This indicates that the Richtmyer-Meshkov instability develops non-trivial spectral
content from its inception. At reshock, the fluctuations in all fields (except for the density) are
amplified nearly uniformly across all scales. From the results obtained here, reshock does not
appear to broaden the range of scales, but primarily imparts energy into structures of all sizes.
At late times, dissipation mechanisms smooth the spectra. When the shock is far away and the
reflected waves become weaker, a very slow decay is observed in the spectra. Compared to the
kinetic energy spectrum, the fluctuating enstrophy spectrum shows a more pronounced cascade
toward small scales, as expected by two-dimensional turbulence phenomenology. Compared to
the other spectra, the pressure spectrum shows the effects of reflected waves with increased
values observed following reshock at t = 7 ms and during the arrival of the reflected rarefaction
wave at t = 11 ms. Thus, quantities depending on pressure fluctuations cannot be neglected in
turbulent transport and mixing models. By contrast, density fluctuations do not exhibit such
strong sensitivity to reshock. The density spectrum shows that the density fluctuations remain
small and are not affected strongly by reshock. The decomposition of the energy spectrum
into the streamwise and spanwise components, indicates that the streamwise component is
dominant, as expected, and that significant statistical anisotropy exists even at late times.
To our knowledge, this represents the first examination of the fluctuation enstrophy, density
variance, and pressure variance spectra in a reshocked Richtmyer-Meshkov mixing layer.
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6.2.4 Time-evolution of statistics

The time-evolution of volume-integrated (or wavenumber-integrated) variances were investi-
gated. The fluctuating kinetic energy exhibited a sharp peak corresponding to reshock, with a
rapid increase followed by a rapid decrease, followed then by a decay. The decay becomes more
established following the interaction with the reflected rarefaction wave at t = 11 ms. The
streamwise and spanwise components indicate that statistical isotropy is achieved at late times.
In fact, the total energy content of the spanwise component increases following the interaction
with reflected waves and the large values of the streamwise component decrease due to dissi-
pation. The fluctuating enstrophy also exhibited a sharp peak corresponding to reshock and
then a rapid decay following the interaction with the reflected rarefaction wave. The density
variance is very small in magnitude and remains nearly constant, although signatures of the
reflected shock and the reflected rarefaction are evident. The pressure variance showed narrow
sharp peaks corresponding to the reshock and the arrival of the reflected rarefaction wave, and
further showed the arrival of the reflected compression wave at late times. In all three cases,
the waves excite fluctuations that are apparent in the increased values of the statistics. The
fluctuations are damped and the variances decrease in magnitude as time evolves.

6.2.5 The effects of reflected waves: outflow and reflecting boundary conditions

The effects of reflecting or outflow boundary conditions at the shock tube end wall (end of
the computational domain) on the amplitude growth and other properties were investigated.
It was shown that the mixing layer width computed using the reflecting boundary condition
was significantly larger than that computed using the outflow boundary condition following
the arrival of the reflected rarefaction wave at t ≈ 10 ms: the widths differed by ≈ 9 cm at
a time 8 ms following the arrival of the reflected rarefaction wave. As the outflow boundary
condition case eliminates wave-interface interactions subsequent to reshock, the flow transitions
to a decaying flow at sufficiently large times after reshock. A quasi-decaying flow develops at
late times in the reflecting boundary condition case, as multiple (successively weaker) wave-
interface interactions occur. To our knowledge, this is the first numerical study that removed
the effects of reflected waves on the evolution after reshock, and showed their important role
on the dynamics of the flow following reshock.

The results also characterize the effects of the reflected rarefaction wave on the mixing
layer. The reflected rarefaction wave, while not significantly increasing the energy content in
the layer, plays an important role in achieving statistical isotropy by exciting fluctuations in
the periodic direction. The results also indicate that the reflected rarefaction wave has a small
effect on the fluctuating enstrophy and the pressure variance evolution. By contrast, reshock
causes a compression of the layer and a significant deposition of energy that allows the layer
to grow very rapidly, concomitant with the formation of complex structures. The reflected
rarefaction wave instead “stretches” the mixing layer, causing it to grow, but provides little
additional energy causing the overall mixing to decrease, as measured by the mixing fractions.
The additional mixing provided by the reflected waves is responsible for the statistical isotropy.
This comparison further supports the important role that reflected waves have in the dynamics
of the flow following reshock. These results also have important implications for modeling
turbulent transport and mixing induced by the Richtmyer-Meshkov instability with reshock.
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6.3 The effects of order of reconstruction and of grid resolution

The dependence of the following quantities on the WENO order of spatial reconstruction
and grid resolution was investigated: (1) the mixing layer width; (2) the circulation; (3) the
mixing profiles; (4) the mixing fractions; (5) spectra; (6) statistics, and; (7) the density and
vorticity fields. Third-, fifth- and ninth-order reconstructions were considered together with
grid resolutions of 128, 256, and 512 points per initial perturbation wavelength λ. To our
knowledge, this is the first systematic investigation of profiles, spectra, and statistics as a
function of both spatial resolution and order of reconstruction in the case of the Richtmyer-
Meshkov instability. The variation of the order of reconstruction and grid resolution in the
present study investigated only the spatial discretization error in the method. It would be of
interest to investigate the error in the temporal discretization by comparing the present results
obtained using the third-order TVD Runge-Kutta scheme to those obtained using a second-
and fourth-order Runge-Kutta time-evolution scheme, to investigate the cumulative effects of
spatial and temporal discretization errors.

6.3.1 The effects on the mixing layer width

The mixing layer width exhibits little dependence on the order of reconstruction and grid res-
olution prior to reshock. However, following reshock but prior to the arrival of the reflected
rarefaction wave, large differences in the mixing layer width are observed. As the order of
reconstruction and grid resolution are increased, the differences between mixing layer widths
decrease, providing evidence of ‘convergence’. Following the arrival of the reflected rarefaction
wave, the differences increase further. Finally, at late times, high-order, high-resolution simu-
lations display significant fragmentation of the complex structures, causing oscillations in the
widths as the cutoff limit used in the determination of the width is approached. The differ-
ences in the widths observed following reshock can be attributed to the effects of numerical
dissipation, which suppresses the formation of small-scale structures in low-resolution, low-
order simulations. Small structures do not have a direct effect on the width prior to reshock.
However, the energy deposited into the layer by the reshock process is directly related to the
presence of small-scale structures, which explains the differences in widths as less energy is
deposited in low-order, low-resolution simulations.

The expression (267) suggests that the error of a high-order method vanishes in the limit
∆x ↓ 0. However, in general, there are no theoretical proofs of the convergence of multi-
dimensional numerical solutions obtained using nonlinear methods for general flows described
by the non-dissipative, compressible fluid dynamics equations (i.e., Euler equations) [66].
Hence, there is no guarantee of pointwise convergence of the numerical solution, i.e., grid
refinement and increasing the order of resolution is not necessarily expected to yield pointwise-
converged quantities. However, ‘convergence’ can be observed in large-scale quantities, such
as the mixing layer width. In fact, as the order of reconstruction and the grid is refined, the
mixing layer width prior to reshock also appears to ‘converge’. It is interesting to note that
some ‘convergence’ is also observed for the width following reshock (t ≥ 6 ms), but prior to the
arrival of the reflected rarefaction wave at t ≈ 10 ms. As the grid is refined and the order of
reconstruction is increased, the discrepancies between the widths decrease and the width ob-
tained from the ninth-order simulation on the medium grid is nearly the same as that obtained
from the ninth-order simulation on the fine grid. This ‘convergence’ is no longer apparent after
the arrival of the reflected rarefaction wave, as the difference between the widths increases
with time. The late-time width shows significant variation as the order of reconstruction is
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increased and the grid is refined, indicating that the interpretation and parameterization of
apparent power-law growth at late times using general expressions of the form

h(t) = a+ b (t+ t0)
θ , (270)

where a, b, and θ are parameters, and t0 is a virtual time origin [50], must be performed with
great caution.

An analysis of the spectra from the simulations with different orders of flux reconstruction
and grid resolutions compared to the spectrum obtained from the ninth-order simulation on
the fine grid showed that there is no apparent ‘convergence’ of these spectra. This, together
with an analysis of mixing fractions and other quantities sensitive to molecular mixing, shows
that quantities sensitive to the small-scale structure of the flow do not generally exhibit ‘con-
vergence’, while quantities determined primarily by the large-scale structures appear to be
‘converged’ at sufficiently high order of reconstruction and resolution. Hence, large-scale (e.g.,
amplitude) data is insufficient to validate numerical simulation results, as quantities sensitive
to fluctuations can differ significantly, while the large-scale structures are insensitive. These
issues, and additional quantities such as probability distributions, other statistics, and turbu-
lent transport quantities, will be discussed in Part 4 of this report [70]. Difference norms and
other quantitative measures of the difference between simulation data of different order and
resolution is relegated to future work.

6.3.2 The effects on the circulation

The positive and negative circulations weakly depend on the grid resolution and order of
reconstruction. Prior to reshock, it is observed that low-order, low-resolution simulations yield
smaller values of the magnitude of the positive and negative circulation, consistent with an
increased numerical dissipation in these simulations. However, following reshock but prior to
the arrival of the reflected rarefaction wave, no direct relationship can be established between
the magnitudes of the negative and positive circulations and the grid resolution and order of
flux reconstruction. This indicates that additional mechanisms influence the magnitude of the
circulation following reshock. Finally, following the arrival of the reflected rarefaction wave,
symmetry breaks and, as expected, the magnitudes of the positive and negative circulations
become very different. However, if the positive and negative circulations are summed, the
resulting total circulation shows a linear growth in time that is strongly dependent on the
grid resolution of the simulation. It is found that the total circulation increased more rapidly
for simulations with a higher grid resolution, and the values of the total circulations were
independent of the order of flux reconstruction.

6.3.3 The effects on the mixing profiles

The mixing profiles exhibit different levels of sensitivity to the grid resolution and to the
order of reconstruction. Before reshock and immediately after reshock, structures agree to
a large extent, with peaks of similar shape and structures at similar locations within the
mixing layer. However, for intermediate and late times following reshock, the development of
mixing is significantly affected by the order of reconstruction and the grid resolution. Peaks
now appear in different locations and have different shapes. In general, the high-order, high-
resolution simulations contain the most structures, with more pronounced and localized peaks.
By contrast, low-resolution, low-order simulations have fewer peaks that are spread over a larger
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portion of the mixing layer. This observation can be explained in terms of varying numerical
diffusion. Simulations with low-order and low-resolution have larger numerical dissipation,
which results in more complete mixing and, therefore, in peaks with larger amplitudes before
reshock. Concomitantly, the large numerical diffusion suppresses the formation of small-scale
structures. Reshock imparts more uniform energy on the interface, which combined with the
stronger inverse cascade, leads to the formation of large-scale, symmetric structures. These
structures appear in the profiles as larger, uniform peaks. By contrast, high-resolution, high-
order simulations have smaller numerical diffusion, resulting in smaller peaks prior to reshock.
However, the small dissipation does not suppress the small-scale structures. These small-scale
structures are then amplified by reshock and lead to the formation of additional small-scale,
complex structures. This fragmented structure is reflected in the profiles as a complex series
of localized peaks. Note that due to the two-dimensional nature of the equations considered
here, the effects of resolution and order of reconstruction can be directly related to the effects
of numerical dissipation. In three-dimensional simulations, the additional mechanism of vortex
stretching exists and must be considered. The results presented here clearly and quantitatively
demonstrate that numerical dissipation effects are significant, as different characterizations of
mixing are possible depending on the grid resolution and order of reconstruction.

6.3.4 The effects on the mixing fractions

The integrated mixing fractions also depend significantly on the order of reconstruction and
on the grid resolution. Again, the difference in results can be attributed to differences in the
numerical dissipation. Low-order, low-resolution simulations have increased numerical dissi-
pation, resulting in greater overall mixing as measured by the production mixing fractions Pt,
both before and after reshock. High-order, high-resolution simulations have smaller numerical
dissipation, resulting in lower values of the mixing fraction Pt. The maximum production
fraction Pm exhibits different behavior. Before reshock, the values of Pm from all of the simu-
lations are similar, consistent with similar widths of the mixing layer and similar structures as
the instability develops. Following reshock, the mixing layer width obtained from high-order,
high-resolution simulations is larger and causes the value of Pm (as measured across the large
mixing layer width) to decrease. High-order, high-resolution simulations having the largest
mixing layer widths exhibit the smallest values of Pm. This change in behavior following
reshock is reflected in the values of the mixing fraction Ξ. Prior to reshock, low-resolution,
low-order simulations show larger values of Ξ, consistent with increased overall mixing due to
the higher numerical dissipation. However, following reshock, Ξ is not clearly correlated with
the resolution and the order of flux reconstruction. Similar mechanisms can also explain the
values of the molecular mixing fraction Θ, which do not show an identifiable correlation with
the order of reconstruction and grid resolution. In summary, the results show that the increased
numerical dissipation in low-resolution, low-order simulations affects mixing as measured by
the mixing fractions. In particular, the mixing fractions quantify mixing across the entire
layer, and therefore the differences in width affect the mixing fractions in ways that cannot be
predicted easily a priori. For this reason, mixing fractions must be considered in the context
of other quantities such as the mixing layer width, and do not provide direct characterizations
of the numerical mechanisms in the algorithm. This is in contrast to the mixing layer width,
which correlates very strongly with the numerical dissipation of the method.
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6.3.5 The effects on the spectra

The effects of grid resolution and order of reconstruction on spectra can be understood based
on the presence of small-scale structures and the numerical dissipation of the method. The
difference in magnitude observed in the kinetic energy spectrum across different resolutions
and orders of reconstruction is a direct consequence of the presence of small-scale flow fea-
tures. High-resolution, high-order simulations support small-scale features resulting in larger
fluctuations. These fluctuations are further amplified during reshock and yield energy spectra
that are similar in shape but much larger in magnitude. Consider instead the density variance
spectrum: all curves overlap for a portion of the spectrum, but show a steep decline depending
on the resolution and order of the method. This is a direct consequence of the numerical
dissipation damping the fluctuations beyond a certain scale. Comparing simulations with dif-
ferent orders of flux reconstruction and different grid resolutions for the enstrophy shows both
the effects of small-scale structures and the effects of numerical dissipation. Similarly, the
pressure variance spectrum also shows a dependence on both mechanisms. As observed from
the ratio of each spectrum from the simulations with different orders and resolutions to the
spectrum obtained from the ninth-order simulation on the fine grid, there is no apparent ‘con-
vergence’ of the spectra: this indicates that quantities sensitive to the small-scale structure of
the flow do not generally exhibit ‘convergence’ while quantities determined primarily by the
large-scale structures appear to be ‘converged’ at sufficiently high order of reconstruction and
grid resolution, i.e., the mixing layer amplitude or width (as shown in § 5.2).

6.3.6 The effects on the statistics

Statistics are affected differently by changes in order of reconstruction and grid resolution.
The fluctuating enstrophy shows the most variation and indicates that the higher numerical
dissipation associated with low-order, low-resolution simulations causes the fluctuating enstro-
phy to decrease significantly. This result is also consistent with the large variations for the
fluctuating enstrophy spectra where a cascade to larger wavenumbers was observed in high-
order, high-resolution simulations. The cascade causes the integrated statistics to have larger
values, as an increased number of modes with similar energy is obtained. The fluctuating ki-
netic energy and pressure variance show little variation, as the differences in spectra observed
earlier are not reflected in the integrated statistics. The periodic component of the fluctuating
kinetic energy shows variations following reshock due to the presence of small-scale disordered
features in high-order, high-resolution simulations.

6.4 Conclusions

Very little experimental data is available after reshock to aid in validating and constraining
numerical simulation data. The present simulations provide pointwise data that can be used
to compute profiles across the mixing layer, measures of mixing, spectra, and statistics. Thus,
this work is representative of an effort to use a validated shock-capturing method to obtain
detailed data not presently available from experiments. For example, there are currently no
experimental measurements of molecular mixing or data concerning the internal structure of
the mixing layer. Also, energy spectra have not been obtained from experimental data. Ex-
perimental data accurately measuring quantities depending on spatial derivatives or quantities
sensitive to small-scale mixing (e.g., mixing fractions) would be very helpful in discriminating
between the different simulation results obtained across a range of orders and resolutions.
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The quantities investigated in this report are not exhaustive. Additional quantities will
be considered in Part 4 of this report [70], including probability distribution functions and
turbulent transport quantities. Detailed data from such simulations can be used to investigate
turbulent transport and mixing model initialization, and the properties and predictions of
turbulent transport and mixing models following reshock and late in time.
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